Publicaties

Skip Navigation Links.
Recent verschenen
Expand per documenttypeper documenttype
Expand per Unitper Unit
Expand per Clusterper Cluster

Zoeken naar publicaties:
Beperk het zoeken tot de velden:

ECN publicatie:
Titel:
Transmutation of nuclear waste: state-of-the-art: national and international research and strategy studies on partitioning and transmutation of actinides and fission products
 
Auteur(s):
 
Gepubliceerd door: Publicatie datum:
ECN NUCLEAIR 1997
 
ECN publicatienummer: Publicatie type:
ECN-I--97-029 Overig
 
Aantal pagina's: Volledige tekst:
52  Niet beschikbaar.

Samenvatting:
Since 1991 the Netherlands Energy Research Foundation (ECN) in Petten,Netherlands, runs a programme on recycling and transmutation of actinides and long-lived fission products that are present in the spent fuel from nuclear power generation. This programme, which is known under the Dutch acronym RAS, is concentrated on the following topics: reactor physics and scenario studies for transmutation, non-proliferation, thorium cycle, irradiations in the High Flux Reactor at Petten, chemical and material studies of fuels and targets, radiological effects and risks. In the present paper a short description of the achievements of the RAS programme is given. Next, the status of the international research on recycling of actinides and fission products is described. Strategies and (innovative) fuel cycle technology required for the recycling of plutonium, minor actinides and fission products are discussed and their possibilities and limits are identified. Also the potential of future options with low actinide production (thorium cycles, accelerators) is considered. Recommendations for future research in this field are given, taking into account the results of a review by a national committee of experts from government, science and industry. The future work should concentrate on: advanced partitioning methods for trivalent actinides, for which a break-through is required, transmutation of actinides using inert matrices as support (non-fissionable materials), studies using 100% MOX-PWRs, HWRs, HTRs and fast burners, innovative systems for future 'clean' energy production using thorium cycle and/or accelerators. It is emphasized that the radiological effects of all new concepts to be developed for recycling and transmutation should be analysed adequately. 6 figs., 14 tabs., 97 refs.


Terug naar overzicht.