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General Introduction

1.1 MATERIALS SCIENCE, STRESSES AND NEUTRONS

The history of materials science is characterized by a constant search for
better materials and by an improving understanding of why a specific
material should be used in a specific application.

Scientists of various background study the enormous variety of
materials available nowadays. For example, an engineer studies materials
on the basis of their behaviour in constructions or during manufacturing.
He ranks materials, according to properties such as strength, formability
and corrosion resistance, without necessarily wondering why a material
possesses those properties. Contrarily, the solid state physicist, who
operates at the other side of the materials science spectrum, would see
a material as a specific mixture of chemical elements which was put into
some physical shape. As such he studies the properties of the mixture
without wondering what they mean for potential products or production
processes.

The materials scientist, moving back and forth between engineering
and solid state physics, links characteristic features such as composition
and structure to the demands of engineers.

In order to describe a material from the materials scientist point of
view, besides composition and structure, a third characteristic feature of
materials should be taken into account: the residual stress state. Just like
composition and structure, the residual stress state influences the
behaviour of a material. An example is stress corrosion behaviour, which
depends strongly on both the sign and the magnitude of the surface stress
state of a material. Other examples involve the dimensional stability of
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a piece of work that possesses a region under tension that is removed
during machining and the dimensional stability during and after welding.

For the determination of the characteristic features, the materials
scientist uses specific tools. For structure determination various types of
microscopes are available, while chemical analysis can be performed in
a variety of ways, ranging from wet chemical analysis to advanced
instrumental analysis (e.g. energy dispersive analysis of x-rays emitted by
the sample in the vacuum chamber of an electron microscope).

The third characteristic feature — the residual stress state — can be
determined in various ways, either destructive or non-destructive. Non-
destructive analysis can be performed by measuring one of the direct
results of stress: the reversible rearrangement of atoms in the material
according to the laws of elasticity, which we normally call strain. A strain
present in a material changes a number of physical properties of the
material. As an example we mention the change of the velocity for the
propagation of ultrasound, which is a second order effect that can be
quantified by measurement.

The most direct assessment of the altered distances between atoms
is the determination of the crystallographic lattice spacing. A convenient
method is by diffraction of either electromagnetic- or particle waves. The
characteristic wavelength of these waves should be of the same order of
magnitude as the lattice spacing to be measured.

The conventional way for the determination of lattice parameters is
x-ray diffraction. In this method, a monochromatic x-ray beam is used in
a diffractometer experiment and by measuring the diffraction angle, a
value for the lattice spacing is found. The penetration depth for x-rays in
metals is in the order of 5 to 100 um, so non-destructive x-ray lattice
spacing measurements are limited to the surface of materials.

In order to perform measurements in the bulk of materials, neutron
diffraction can be used. Contrary to x-rays, neutrons penetrate several
millimetres to several centimetres into most solid materials. Typically, the
flight path length at which the 50% level of the primary neutron beam
intensity has been reached ranges from 5 to 70 mm. Because the wave-
length of neutrons can be chosen to be more or less equal to that of x-
rays, the same diffraction laws apply and as such neutrons can be used to
determine lattice spacings in the bulk of materials. When the strain free
lattice parameter is known, the strain can be calculated from the
measured lattice distance. When an appropriate set of strain measure-
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ments is performed — each belonging to a different orientation of the
specimen — the three dimensional stress state is calculated according to
the laws of elasticity.

The advantage of neutrons over x-rays is thus made clear. Unfor-
tunately the technique has a number of disadvantages.

1. In order to perform neutron stress measurements, one needs a
neutron source in the form of a nuclear reactor or a spallation
source. Both source types are scarce and both are non-transpor-
table. So in order to perform this type of measurements one has
to bring specimens to the source instead of bringing the source
to the specimen, which is nowadays readily done with x-ray
equipment. This imposes strong limits on the size of the items
to be investigated.

2. The relatively low brightness of neutron sources compared to
x-ray sources, poses limits to the maximum achievable spatial

resolution of the technique that can be achieved in a reasonable
measurement time.

Despite these complications, numerous existing materials science
problems can potentially be solved. In this thesis the experimental

difficulties related to the technique as well as a few examples of
application will be presented.

1.2 HISTORICAL PERSPECTIVE

Stress measurements using x-ray diffraction techniques have been
reported from 1925 onward [1.1]. The theoretical understanding of
the measurement method has been completed in 1936 [1.2]. The first
attempts have been made using film techniques. With the development
of better detection hardware, the diffractometer became the most abun-
dantly used instrument for the determination of stresses in crystalline
materials [1.3].

Also in 1936, the phenomenon of neutron diffraction was discovered
[1.4][1.5]. It was not until 1981, however, that the first publica-

tions appeared, mentioning neutron diffraction as a tool for stress deter-
mination [1.6][1.7][1.8][1.9].
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The first attempts to determine stresses by means of neutron
diffraction were mainly focused on the proof of the principle, just like
neutron diffraction itself in the old days. A variety of validation ex-
periments have been reported by Pintschovius et.al. [1.6] and Krawitz
et.al. [1.7]. Al these experiments have been performed using specimens
containing a predetermined stress state. The specimens range from an
elastically bent bar to a thermally shrunk fitted joint.

Most experimentalists use cadmium masks between the source and
the specimen as well as between the specimen and the neutron detector.
The minimum sample size obtained in this way is reported by Pintscho-
vius who performed measurements employing a sample size of no more
than 10 mm’.

When studying t’l(e early literature on neutron diffraction stress
measurements, one thing becomes very clear: in order to do these
experiments one should have a high flux reactor and still a lot of
patience. To give an indication: the time consumption for the registration
of a diffraction peak using x-ray diffraction is in the order of several
minutes, while for neutron diffraction 5 to 24 hours for one diffraction
peak is no exception. Knowing that for the determination of one stress
value in a one dimensional stress field one needs at least 3 diffraction
peaks, one can conclude that neutron diffraction will never become a
service operation. It will be limited to fundamental work and to pilot
experiments on high capital products. The argument why it makes sense
to do these measurements at all is, however, very simple: there is no
other way to achieve stress information about the bulk of materials non-
destructively.

The experiments described by the pioneers in this field all lead to the
same conclusion: it is possible to measure stresses by means of neutron
diffraction. In a second round of publications the same authors start to
give their experiences on real life specimens possessing simple residual
stress patterns which are predicted by means of finite element calcula-
tions or simply qualitative analysis. A few examples from that period are

Quenched cylinders [1.10].

Autofrettaged steel tubes [1.11][1.12].

Steel sheet [1.13].

Stress due to fatigue in a test specimen [1.14].

el M
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5. Stress in materials consisting of more than one phase [1.15][1.16]
[1.17][1.18].

6. Welding stresses [1.19][1.20][1.21].

7. Stress measurements in uranium which is a difficult material for
X-ray stress measurements [1.22].

An important publication in this period is the one from Allen et.al. [1.14]
which gives a very good theoretical background for the determination of
the stress tensor from measured strain data. It was this article that stood
as a model for the chapter on stress determination that is given later in
this thesis as well as for the development of a data reduction computer
program which is closely related to that chapter.

. The x-ray spectrum generated in a tube is a superposition of very
intense monochromatic lines which are characteristic for the tube’s anode
material, on a continuous spectrum that depends on the tube voltage. For
single line diffraction measurements like stress measurements, usually one
of the characteristic wavelengths is chosen. Contrary to x-rays, the
wavelength spectrum of a neutron beam is merely a continuous one with
no particular peaks, so in a neutron beam — before monochromatization
— all wavelengths are present. This phenomenon is used by Pintschovius
in a variable wavelength set-up were the lattice distance is not determined
in a scan of the scattering angle but during a scan of the wavelength. The
advantage is clear: the scattering geometry does not change during the
registration of the lattice distance and geometry dependent phenomena
such as attenuation, no longer affect the data reduction. A second
advantage is that the scattering angle can always be set to 90°, the ideal
angle in terms of spatial resolution.

Most experimentalists use some sort of scanning technique (wave-
length or scattering angle). The group of Krawitz et.al., besides scanning
techniques, have shown a different approach: use of a position sensitive
detector [1.23]. This type of detector is advantageous, because a
complete diffraction peak is ’seen’ at the same time. As such, a more
economic use is made of the available neutrons. However, the drawback
is that the positioning of a sampling volume in the specimen becomes
cumbersome, as the regions in the position sensitive detector correspon-
ding to a specific scattering angle are no longer direction sensitive and
the neutrons arriving there could be coming from anywhere in the
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specimen. The solution for this, as applied by Krawitz et.al. is a radial
Soller slit placed in front of the detector.

Besides the basic thoughts about how to build a measurement set-up
and how to subsequently perform measurements with it, the authors of
the cited papers all pay some attention to the problem of alignment. As
neutron diffractometers are usually not built for very small samples, the
alignment of such a sample in the scattering geometry is usually not very
critical. For stress measurements, however, the alignment is very critical
as the sampling volume in the specimen is very small indeed. During a
change of the orientation of a specimen, in order to measure the lattice
spacing in another direction in the sample, the experimentalist must be
very sure that the sample volume he is studying is located at the same
position as before. AlKO the exact location of the sample volume with
respect to the specimen geometry must be well known in order to
allocate the stress value to be found eventually, to a specific specimen co-
ordinate.

A more fundamental experimental problem is the determination of
the stress free lattice parameter d, which is needed for the calculation of
the stress state whenever that is more complicated than bi-axial. For this
purpose several options are available, however, none of them is generally
applicable. One of the options is the measurement of d, using a stress
free specimen of the same composition as the real specimen. Another is
the application of the force balance law that states that the stress
integrated over a section through a piece of material should be zero.
Which solution should be applied in which case has been one of the
major topics that have been discussed recently in a NATO workshop,
march 1991 [1.24].

After having gone through the available literature it can be
concluded that stress measurements by means of neutron diffraction ask
for a creative solution depending on the problem to be solved, as well as
on the equipment and the time available.

1.3 IMPLEMENTATION IN PETTEN

The work described in this thesis has been performed at the High Flux
Reactor situated at Petten, The Netherlands. The reactor is the property
of the Joint Research Centre of the European Communities. Its main
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purpose is to serve as a tool for investigating the behaviour of materials
that have been exposed to in-core neutron irradiation. The thermal
neutron flux that is present in the cooling water of the reactor can be
extracted in the form of neutron beams. These beams are used in various
beam experiments by the Netherlands Energy Research Foundation
(ECN).

The idea for the measurement of residual stresses at the Petten
establishment stems from 1986. It is a logical extension of the work going
on at the laboratories of the Foundation for Advanced Metals Science at
Enschede (SGM) in the field of residual stress measurements by means
of x-ray diffraction on the one hand and the objective of the Solid State
Physics group of ECN to aim their neutron beam research knowledge
more towards applied work on the other hand. The first step was to
check whether the available intensity is sufficient for stress measurements.
When this has been confirmed, a PhD project was started of which this
work is the result. The first objective of the project was to develop a
preliminary set-up. After a successful development this set-up was
planned to be used for the solution of a number of specific materials

science problems. The first steps undertaken within the framework of the
PhD project were

1. Building the set-up.
2. Solving the alignment problems.
3. Development of data reduction processes.

In the first part of this thesis, these aspects will be presented.

The development stage, took much more time than anticipated.
Therefore the application of the technique had to be restricted, as far as
the PhD project is concerned. The measurements that have been per-
formed, can be classified in two categories

1. A ’proof of the principle’ experiment in order to show that the
instrument really works. We have chosen for the determination
of diffraction elastic constants using an iron bar subjected to
pure bending.

2. Measurements on a few ’engineering cases’ in which residual
stresses play a role. A selection was made out of the numerous
experiments possible. Measurements were to be performed on
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quenched iron and steel cylinders and on a bar of cold rolled
steel.

All neutron measurement results have been compared with the

results of x-ray measurements and with theoretical calculations based on
finite element- and other calculations. In the second part of this thesis the
results of this work are presented.
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2

Applied Diffraction Theory

2.1 INTRODUCTION

The principle of stress measurements by means of diffraction techniques
is a very clear one. Neutron or x-ray diffraction is used as a means to
determine the lattice spacing of a specific stack of crystallographic planes,
as a function of the orientation of such planes in the specimen axis
system. From an experimental point of view, the measurement of a stress
state in a specimen reduces to the quantitative determination of the
angular position of a number of diffraction peaks. These positions are
translated into lattice distances. Subsequent mathematical analysis of the
lattice distances as a function of their orientations will eventually lead to
the determination of the stress state.

In this chapter we will limit ourselves to the first step of the process
described above: the determination of the position of a diffraction peak.
In this stage two sources of error can appear

1. A statistical error which is related to the shape of the diffraction
peak and to the way the diffraction experiment is arranged in
terms of counting time, step size etc. In section 2.2 it will be
shown that its magnitude can be estimated from a peak fit
procedure, when both shape and intensity of the peak are
known.

2. A systematic error that does not change when a diffraction peak
measurement is repeated in exactly the same circumstances. This
systematic error is a function of the specimen orientation in the
diffractometer geometry as well as of the sample geometry itself.
A stress measurement consists of a number of such peak

11
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7 diffraction cone

’seen by detector’

NA
20(measured) 20(corrected)

Fig. 2.1 Illustration of the "umbrella effect’. Because a finite part of the cone is sensed by
the detector, an apparent shift to the hollow side of the cone is caused.

position determinations. For each peak the geometrical cir-
cumstances are different and as a consequence, the systematic
error will be different for each of them.

At this point it is interesting to note that a systematic error that is
equal for all diffraction peaks that enter a stress determination problem,
does not harm the determination of the stress state at all. This follows
from the fact that for stress measurements relative peak shifts are
important and absolute peak position determinations are not necessary.

In order to eliminate the geometry dependent part of the systematic
error (i.e. the part that is not equal for all peaks), the influence of the
geometry on the position and shape of the diffraction peak should be
established. The two main sources of geometry dependent systematic
error are

1. The neutron detector ’sees’ a finite height of the diffraction
cone. When this cone has an apex unequal to 180° i.e. when the
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78.0 . . . 80.0

Fig. 2.2 Illustration of the attenuation effect. At the low 2 side of the peak (left inset),
the through specimen beam path is longer compared to the situation at the high 2¢ side
(right inset). This causes an apparent shift of the diffraction peak. This can be corrected
for by calculating the intensity one would have measured when the beam path would have
been equal for all points (e.g. equal to the path length belonging to the peak position of
the not corrected profile). The dark symbols represent the as measured intensities, the

open symbols represent the corrected intensities.

cone is not degenerated to a plane, the detected peak position
is shifted towards the cone axis. This phenomenon is commonly
referred to as the ’umbrella effect’. In figure 2.1 the umbrella
effect is shown for 2¢p < 90°.

2. Depending on the beam trajectory through the specimen and
consequently depending on specimen form and orientation, the
neutron beam is attenuated. During a 2p-scan all geometrical
factors remain unchanged except the 2¢ itself. The beam trajec-
tory length (and consequently the amount of attenuation) is a
function of 2¢p, so the intensity values measured at different
positions in a 2¢p-scan suffer from a slightly different attenuation.
This causes an apparent shift in the peak position as is shown in
figure 2.2.
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In sections 2.3 and 2.4 of this chapter these two sources of systematic
error as well as the ways to account for them will be discussed.

2.2 THE STATISTICAL ERROR IN THE PEAK POSITION

In this section, the influence of the diffraction peak shape and the
measurement procedure on the peak position will be analyzed. The main
interest is not the peak position itself, but the estimated statistical error
in the calculated peak position.

A diffraction peak obtained in a neutron diffraction experiment
consists of a number of intensity values, each value corresponding to a
distinct counter (2¢) position,. The peak is thus defined as a set of
positions (2¢) and a corresponding set of intensities. Characteristics of the
first set are the number of counter positions and the interval length
between two adjacent positions. Both are chosen by the experimentalist.
The second set is characterized by the peak position, the peak height and
the shape of the profile. These characteristics will only be known after
the measurement as only nature knows them. Nevertheless, the
experimentalist has some influence on the peak height, because he is free
to choose the counting time per scan point.

The aim of the present study is to establish the influence of the
measurement method-and the peak shape on the error in the peak
position. This information can be generated in a simulation process and
does not necessarily have to be generated by a diffraction experiment.
Provided that the general shape of a neutron diffraction peak is known
beforehand, peaks of any length and shape can be numerically simulated
[2.1]. Numerical simulation leaves the ’experimentalist’ completely
free to generate peaks according to his wishes. As such, the influence of
any measurement parameter can be studied over a broad range in small
steps, which would hardly be feasible in actual experiments.

The simulated peaks are used as input for a peak fitting procedure
that gives the estimated statistical error in the parameter ’peak position’.
The influence of the peak parameters on the statistical error of the peak
position can thus be studied.

2.2

The statistical error in the peak position 15

1200 , ,

1000

800 -

]
.
|
/

Intensity (counts)

400 |

200 | /

76 77 78 79 80
2p (deg.)

Fig. 2.3 Example of a Gaussian curve with 20 = 78° Oy = 0.6°, I, = 900 counts and
I, = 100 counts. The solid curve represents the exact mathematical curve; the data points
represent the Poison deviates based on the mathematical curve. The error bars have a

length equal to the square root of the intensity (only visible at the data points of high
intensity).

2.2.1 Diffraction peak simulation
Unlike in x-ray diffraction, the diffraction peak obtained in a neutron

diffraction experiment can be approximated very closely to a Gaussian
profile [2.2]

a2 22=28)

I=1c¢e T 4 ]

(2.1)

where
I measured count;
20: peak position;
Opwnm: full width at half maximum;
Iy intensity count at the peak position;
I background count.

Equation 2.1 is represented in figure 2.3. A diffraction peak measurement
could be simulated by simply calculating an array of intensities according
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to equation 2.1. However, Such a profile would not contain any influence
of the counting statistics present in a real experiment. The calculated
intensities should be scrambled just like in a real experiment that suffers
from counting statistics. Counting statistics are known to show a Poison
behaviour. This behaviour can be implemented in the following way, the
obtained intensity values I are one by one used as input for a numerical
routine that returns a random draw from a Poison distribution with a
mean value I. This closely resembles the reality in a measurement. The
variance of a counted number that we have now simulated, is always
equal to the measured value itself [2.3]. Hence for an estimate of the
standard deviation of the simulated intensities, their square roots should
be taken. This is needed to estimate the error in the peak position during
the subsequent fitting procedure. In figure 2.3 the result of this Monte
Carlo simulation process is shown.

2.2.2 Influence of measurement parameters.

The parameters that determine the arrays containing a measured
diffraction peak fall in two classes: measurement parameters and physical
parameters. In a real experiment these parameters are chosen by the
experimentalist. The measurement parameters are

1. measurement time;
2. step size between the points;
3. total scan length.

Physical parameters are not influenced by the way the experiment is
arranged. The physical parameters are

1. peak position;
2. full width at half maximum (FWHM);
3. peak to background ratio.

In figure 2.4 to 2.8 the influence of these parameters on the precision
of the peak position determination is given. The influence of the physical
parameter ’peak position’ is not studied as it has no influence on the
error. The data points in these figures are obtained by fitting a Gaussian
profile (equation 2.1) to the results of the simulation process described
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Fig. 2.4 Influence of the count number at the top of Gaussian shaped peak profiles on the
standa‘rd deviation A26 of the peak position 26. The data points have been obtained from
Gaussian fits to simulated peaks. The solid curve serves as a guide to the eye.

in 2.2.1. For the present investigations, Table 2.1 shows the values at
which the peak- parameters are kept fixed when their influence is not
studied. The employed fitting method is the algorithm of Levenberg-
Marquardt [2.4] which was implemented on a personal computer.

Measurement time

In figure 2.4, the precision of the peak position is given as a function of
a quantity that is proportional to the measurement time: the number of
counts at the top of the profile. The coefficient of proportionality is
unknown. It can be obtained from a trial experiment on a specimen in
the experimental configuration one likes to study. The figure shows a
quadratic relationship, meaning that when the amount of peak counts is
multiplied by 2, the error is reduced by a factor V2. The peaks are
simulated for a FWHM value of 0.6°, which is approximately equal to the
instrumental resolution of our instrument, as will be described in the
following' chapters. From figure 2.4 it is seen that a counting time
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corresponding to a peak count of 1000 counts, the precision is about
0.004°. This is usually sufficient for stress measurements.

Simulations clearly do not give general results. When, for example,
the FWHM or the peak to background ratio differ from the values given
in Table 2.1, the amount of peak counts needed for an acceptable error
level will also be different. Separate simulations should be performed for
each case in order to conclude which amount of peak counts results in an
acceptable error level. Unfortunately, the decisive factor for the
measurement time is more likely to be the time available for a peak scan,
than the (low) error level one likes to achieve. In that case the simula-
tions may help to conclude beforehand whether performing the measure-
ment is realistic.

Step size.

The influence of the step size on the peak position error is given in figure
2.5. The figure shows that taking half the step size (all other parameters
remaining constant) reduces the uncertainty in the peak position by a
factor of V2. On the other hand, taking half the step size doubles the
total time needed for the experiment. So we arrive at an interesting
conclusion that it does not matter whether the total measurement time
is consumed in terms of counting time per scan point or in terms of the
step-size. Eventually a general square root relationship describes both
influences

Table 2.1
Fixed values for the peak parameters that are
in effect when their influence is not subject
to study in the simulation experiments.
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Fig. 2.5 Influence of the step size employed during the registration of a diffraction peak

profi]g, on the standard deviation A26 of the peak position 26. The data points result from
Gaussian fits to simulated profiles. The solid curve serves as a guide to the eye.
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parameter value
peak position” 78°
full width at half maximum 0.6°
peak to background ratio 900/100
nr. of counts at peak position 1000
step size 0.1°
scan length (X FWHM) 2

Influence of parameter is not studied.
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Fig. 2.6 Influence of the scan length in units of full width at half maximum on the standard
deviation A20 of the peak position 26. The data points result from Gaussian fits to
simulated peak profiles. The solid curve serves as a guide to the eye.
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Fig. 2.7 Influence of the full width at half maximum on the standard deviation A26 of the
peak position 26. The data points result from Gaussian fits to simulated profiles. The solid
curve serves as a guide to the eye.

stepsize (2.2)
counting time per scan point

A20 = const.

Scan length

In figure 2.6, the influence of the scan length is given. The scan length is
expressed in (dimensionless) units of FWHM in order to make the results
more generally applicable. As far as the precision of the peak position
determination is concerned, it is unnecessary to apply scan lengths longer
than twice the FWHM value. Simulation results from longer scans show
no improvement in precision. This is a very important conclusion as this
is in fact the best possible way of using the available beam time as
efficiently as possible. Performing scans over a scan range longer than
twice the full width at half maximum is a waste of time when the main
interest is in a precise determination of the peak position. It should be
noted, that this conclusion is not valid for the fit parameters /, and Opyyy
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Fig. 2.8 Influence of the peak to background ratio on the standard deviation A26 of the
peak position 26 (the value of the peak counts above the background is considered to be
constant in these results, so that the p/b ratio is changed by varying the background value
only). The data points result from Gaussian fits to simulated profiles. The solid curve
serves as a guide to the eye.

of equation 2.1. Fortunately, the precision demands on these parameters
are not as high as those on the peak position.

FWHM

In figure 2.7 the uncertainty in the peak position as a function of the
physical parameter FWHM is given. The relationship is linear. As a result
of its physical nature, the FWHM cannot be changed by the experimen-
talist, for a given diffractometer and specimen. In view of the foregoing,
the results are dramatic. Assume that the FWHM increases by a factor
of 2. As a consequence, the error in the peak position will also increase
by a factor of 2. According to equation 2.2, the counting time per scan
point has to be multiplied by 2* = 4, in order to accommodate for this.
The number of scan points is multiplied by 2 in order to maintain the
same scan length in terms of FWHM, so the total measuring time for the
peak determination will be 8 times longer (in the simulations we have
used a constant step size, whereas the scan length is kept constant
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relative to the FWHM which has now changed, see Table 2.1). So when
the scattered intensity remains unchanged the peak determination takes
8 times as long. However, when two materials, possessing the same
chemical composition, show peaks for which the FWHM values differ by
a factor of 2, the peak intensity inevitably drops by the same factor. An
extra factor of 2 in counting time per scan point is needed to accom-
modate this. So ultimately, the measurement time is multiplied by 16 in
order to maintain the same precision. An example of this is a martensitic
steel, which in the hardened state has exactly the same composition as in
annealed state. However, the difference in diffraction line width can be
as high as a factor of 4, resulting in an overall increase in the measure-
ment time which can be as high as 256 times.

7
Peak to background ratio
In figure 2.8, the effect of the peak to background ratio on the uncertain-
ty in the peak position is given. The simulated peaks are chosen to be
always 900 counts over background level. It is clear from the figure that
trying to improve the peak to background ratio beyond 2 is not helpful.
If the peak to background ratio becomes smaller than 2, however, the
uncertainty rapidly increases. Unfortunately, the requirements for small
sample volumes, which is characteristic for stress measurements by means
of neutron diffraction, often results in very small value for the peak to
background ratio. It is therefore important to reduce the background
level around the diffractometer set-up to the lowest possible value by
employing adequate radiation shielding wherever possible.

2.2.3 The use of diffraction profile simulations

In the previous section, the influence of a number of experimental
parameters on the precision of diffraction peak determination is
discussed. For this purpose we used simulated diffraction data. In
measurement practice, this type of simulations helps the investigator to
predict the measurement precision after having performed a trial
experiment for every peak that is needed for the stress measurement. The
trial experiments deliver values for the peak to background ratios, the full
widths at half maximum and the peak positions as well as for the
counting rates. The trial experiment thus helps to find realistic values for
the parameters, that we have arbitrarily set to the values of Table 2.1, for
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the present simulations. The discussed simulation technique may help to
establish the measurement parameters step size, scan length and counting
time which must be employed in order to achieve an adequate measure-
ment precision in the shortest measuring time possible. The trial ex-
periments take only a fraction of the total time needed for a complete
stress measurement. As stress measurements by means of neutron
diffraction are very time consuming, the combination of trial experiments
and this type of simulations help the experimentalist to plan the measure-
ments such that no neutron beam time is wasted. The only thing the
experimentalist has to know beforehand is the precision he requires in
peak position. This is also governed by the beam time available.

2.3 THE UMBRELLA EFFECT

In the foregoing, the diffraction peak obtained in a neutron diffraction
experiment, is assumed to be of Gaussian shape. The top of this Gaussian
corresponds to the diffraction peak position. It has been mentioned in the
introduction that the shape and position of a real diffraction peak will be
slightly different from this situation. The peak shape is neither exactly
Gaussian nor is the peak position equal to the maximum intensity
position of the curve. This was stated to be due to several effects. One
of these effects, the so called *umbrella effect” will be the subject of
discussion in the following sections. It will be shown that the umbrella
effect strongly depends on the geometry and location of the neutron
beam limiting apertures which are characteristic for the neutron stress
measurements described in this work.

2.3.1 Theoretical profile

In a powder diffraction experiment on a point sample in a horizontally
placed diffractometer, a cone of diffracted radiation is spread out by the
sample. As can be seen from figure 2.1, the direction of the intersection
line of the cone and the horizontal plane that includes the sample is the
peak position we want to determine. In order to exclusively detect
diffracting neutrons that are moving along this intersection line, the
vertical opening in the detector should be very small. In order to obtain
a reasonable neutron count rate, however, the sample can not be a point
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sample, nor can the detector height be very small. Increasing the detector
height causes diffracting neutrons that are not moving along the line that
defines the peak position, to contribute to the detected intensity. During
a diffraction peak scan, this causes an apparent peak shift towards the
axis of the diffraction cone. The finite height of the sample adds to the
complexity of this problem.

Van Laar and Yelon [2.5] derived a function that gives the dif-
fraction profile for what they call an ideal instrument and an ideally
scattering sample. By ’ideal’ they mean that the instrument under
consideration has a perfectly parallel beam and the scattering of this
beam by means of diffraction of every point in the sample takes place
according to a delta function. When in this ideal situation, the finite
dimensions of the sample and the detector are taken into account, a
theoretical peak can be calculated. This peak shows a one sided
broadening. Van Laar and Yelon state in their article that this one side
broadening effect can be neglected in neutron powder diffraction
measurements above a scattering angle 2¢ of about 45°. In powder
diffraction practice this statement has proven to be true. However, in the
practice of stress measurements by means of neutron diffraction the
geometrical situation might be quite different from the powder situation,
as the instrumental parameters used by van Laar and Yelon are different
than those needed in a stress measurement set-up. This is mainly due to
‘the use of beam apertures in the incident and diffracted beams. Because
of the importance of the umbrella effect in our measurements, we shall
briefly review the theory given by van Laar and Yelon.

Consider a diffraction experiment at a nominal diffraction angle 26
using a counter of height 2H rotating at a radius L around a sample of
height 2S. For H = S the theoretical diffraction profile is given by [2.5]

_ L 23
D(2p,20) ST COS%W(ZsoJ@) (2.3)
where
h=LJ ol (2.4)
00528]

The weight function W(2¢,20) is a geometry dependent function for which
three regions are distinguished
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Fig. 2.9 Theoretical diffraction profile due to the umbrella effect. 2H = 20 mm, 2§ = 20
mm, 20 = 78° and L = 110 mm. This profile is a one side broadened delta function, so
that at 2p = 20 the intensity actually reaches infinity.

W(2p,20) = 0 . h=H+S
W2p20)=H+S—-h ; H+S>h=H-5 (25
W(2p,20) = 28 s H=S>h=0

In figure 2.9 an example of this theoretical diffraction profile is given for
a geometrical situation, that is frequently encountered in neutron stress
measurement practice.

Van Laar and Yelon have derived these equations for an ordinary
powder diffractometer in which the parameters S, H and L are very well
defined. Moreover, these parameters are constant throughout the
measurement of a powder diagram. For our application of this theory, L
the distance from the sample to the counter needs some special attention.
The value that should be used as the detector distance L is the distance
where the vertical window, that determines the part of the diffraction
cone that is eventually ’seen’ by the detector is situated. In the stress
measurement configuration, this vertical restriction window is found in
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the secondary slit assembly. (See the treatment of this set-up in Chap-
ter 4). It is the mask possessing the smallest height and at the same time
is situated closest to the counter. This height is then called as 2H.

2.3.2 The total profile

Unfortunately, the theoretical peak that was derived in the previous
section can never be measured. The peak that will be measured in a real
~ diffraction experiment is a combination of the theoretical peak, the
instrumental resolution function and the sample response function.
Mathematically this combination can be interpreted as a convolution
[2.6]. The resolution function, convoluted with the sample response
function, R(A,26), ca}be closely approximated by a Gaussian as

R(A20) = _L_ g~ony (2.6)
Ayn
where
A4=_0T (2.7)

2y/In 2

For T in equation 2.7, van Laar and Yelon take the instrumental
resolution only. In our analysis, besides instrumental resolution, we let all
sample influences to contribute to I'. Examples of these influences are the
microstrain and the coherent domain size. We assume that the sample
influence on the sample/resolution function does not alter its Gaussian
nature.

Mathematically it is an advantage with neutron diffraction that the
resolution/sample function can be represented by such a simple function
as a Gaussian. This is in contrast with x-ray diffraction where the reso-
lution function is neither symmetrical nor Gaussian due to Ka,.

The convolution of the theoretical profile and the resolution/sample
function has the following form

(<)

y(2p) = j D(A, 20)R(2p — A, 20)dA (2.8)

- 00
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Fig. 2.10 Two calculated diffraction curves. For the solid curve, the umbrella effect is taken
into account. The dashed curve is calculated without taking the umbrella effect into

account. The solid curve is the result of a convolution of the dashed curve with the
theoretical profile that was given in figure 2.9.

Unfortunately, the convolution of equation 2.8 cannot be calculated
analytically. It can, however, be carried out numerically. The integration
algorithm used is a Gauss-Legendre quadrature [2.7]. The limits of
integration, which in the numerical case can not be infinite, follow from

an analysis of equation 2.5. Using equation 2.4 the conditions = H + S
can be rewritten as

where

2p . = arccos [ cos 20‘]{(H + S)/L}2 + 1 ] (2.10)

Using 2.9 and 2.10, equation 2.8 is rewritten as

20
y(20) = J D(A, 20)R(2p — A, 26)dA (2.11)
2%
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Fig. 211 Results of a Gaussian fit (open symbols) and a fit based on the convolution
function that is described in the text (dark symbols) on diffraction profiles that have been
obtained from a powder specimen. The results are given as a function of the distance of

the secondary beam aperture to the sample.

Equation 2.11 can be used as the model function in a Levenberg-
Marquardt fitting procedure [2.4]. The result for the parameter 20 is then
the position of the top of the diffraction peak corrected for the umbrella
effect, while T, another free parameter in this fitting process, charac-
terizes the sample/resolution function.

In Figure 2.10 two calculated diffraction profiles are given. Both
having the same 26 but one is calculated according to a Gaussian curve,
while the other is calculated according to the convolution function
described by equation 2.11. From the figure it is clearly visible that the
influence of the umbrella effect on the peak position is fairly large, while
the influence on the form of the peak can be neglected.

In a stress measurement, a number of peaks are measured. Normally,
these different peaks are measured in completely different geometrical
circumstances (i.e. different values for 2H, 25 and L). In figure 2.11 an
example of the influence of the umbrella effect for a number of
diffraction peaks, taken from the same sample with different values for
the aperture distance L is given. In the figure, the results of a simple
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Gaussian peak fit and a peak fit using equation 2.11 are compared. As
the measurements all stem from the same (powder) sample, every .eak
shoulq yield the same peak position 26. The Gaussian fit fL;nction I()ioes
not give this result, while the convolution function that has bee
described in this section does. ’
The conclusions that can be drawn from figure 2.11 are that the
umbrella effect influences this type of measurements and that the
c.or}volution function presented here, should be employed for the peak
fitting procedure whenever the umbrella effect is different for the various

dtlfiractlon peaks that have to be measured in order to determine a stress
state.

2.4 ATTENUATION OF THE NEUTRON BEAM

A neu'tron beam of intensity I, that enters a piece of material loses
intensity as it proceeds through the material. The intensity is diminished
because of two processes: diffraction and absorption. The sum of both
these effects is defined as: beam attenuation. The beam attenuation
strongly depends on the composition and the texture of the material. For
x-rays the situation is vastly different, because the attenuation is r.nore
related to absorption and the texture of the material does not influence

this. The attenuation is described by a si
imple f .
bert-Beer type: Y ple formula of the Lam

I =[e™*P (2.12)

In equation 2.12, u is the coefficient of attenuation, D is the flight path
of ne}ltrons through the material. D depends on the form of the specimen
and its orientation in the neutron beam geometry as well as on the
neutron beam geometry itself.

' As was already pointed out in the introduction to this chapter (see
figure 2.2), one of the parameters that determine the beam geometry is
the counter angle 2¢. So, during a scan with this variable, which is
performed in order to determine the position of a diffraction, peak, the
peam geometry changes. According to equation 2.12, this inﬂuence; the
{ntensny that is measured at the different scan positions. Suppose for
instance we take the beam path D to be longer at the low 2¢-side of the
scan than at the high 2p-side of the scan which is the case for ¢ < ¢ (cf.
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figure 2.2). As a consequence, the measured intensity is lower at the low
2¢p-side, while at the high 2¢p-side it is higher. Hence the top of the
measured peak will shift to a higher 26 value. This process results in a
systematic error. The magnitude of this error depends on other geometri-
cal parameters such as the depth below the surface of the sampling
volume and the orientation and shape of the specimen. It is easy to
imagine that in a situation where the beam hits the specimen under a
grazing angle, the attenuation effect will be larger than at angles of
incidence that are more or less perpendicular to the specimen.

It is possible to express D in the relevant geometrical parameters.
Knowing this expression, and knowing u, the intensity scattered from a
specific region of the specimen — the sampling volume — can be
calculated by integrafion over this volume. When this calculation is
repeated for the 2 values that together form a scan, a series of
correction factors that are all slightly different from each other can be
made. When the measured intensities that belong to the series of 2¢
values are multiplied with the series of correction factors, the diffracted
intensity, suffering no neutron attenuation at all, can be reconstructed. In
practice one can take I,(2¢) from equation 2.12 as the corrected intensity.
When the array of corrected intensities is used as input for a peak fitting
algorithm, the peak position for the case of no attenuation is obtained
and so, the systematic error due to attenuation effects is eliminated.

The problem of how to deal with the attenuation effect is now
reduced to the solution of a volume integral. In this problem, the
determination of the integration boundaries is the most complicated part.
We have attacked the problem in two phases:

1. The incident and diffracted neutron beam flight paths will be
regarded as lines. Subsequently, the sampling volume reduces to
a point. The function that gives the flight path as a function of
the geometrical parameters is now easily derived on the bases
of a geometrical treatment. When correction factors would be
calculated from this approach, the changes in sample volume
during a 2p-scan are neglected.

2. The neutron beam will be regarded as a parallel set of incident
and diffracted beams, each pair corresponds to a geometry
described above. This set is extended such that the points in the
specimen belonging to each pair together form the sampling
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Fig. 2.12 A bar shaped specimen in the neutron beam geometry. The total flight path
through the material can be calculated from the geometrical parameters y, ¢, ¥ and d.

volume. The boundaries of this continuum will be expressed in
the parameters that determine the sampling volume so that the
integration can be carried out numerically. The beam aperture
and the beam divergence enter the derivations here.

2.4.1 The flight path as a function of the scattering angle

In the discussions of this section, the specimen is assumed to be bar-
shaped (other specimen forms, which are not included in this chapter lead
to analogous considerations). In figure 2.12, the contours of the bar-
shaped specimen are drawn in a simplified neutron beam geometry. The
orientation of the specimen in the neutron beam geometry is given by the
offset angle v, the angle of the surface normal with the bisector of the
angle between primary and diffracted neutron beams. The flight path is
separated into two parts. The total flight path of primary and diffracted

beams within the material, which depends on the depth below the surface
y can now be calculated.
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local intensity profiles

diffracted beam incident beam

Fig. 2.13 Geometry of the primary and secondary neutron beams, showing the effects of
the divergence of the beams (a,,a,) and the widths of the apertures (w,, w,) as well as the
aperture to specimen distances (/,,/,).

For0=sy <o

D=2 _+_ 2 (2.13)
sinfp—y) ~ sin(p +v)

and for ¢ = y < 90°

D=_2 _4+_ 47 (2.14)
sin(y+p)  sin(y —p)
These equations are sufficient for calculating the series of correction
factors belonging to the measurement points of a narrow diffraction peak
when the diagonal length of the sample volume is small compared to the
flight path through the specimen using

(2.15)
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Fig. 2.14 The effect of the orientation angle 3 on the measured position of a diffraction
peak according to the integration model derived in the text. Here w =w,=1mma, =
a, =051 =1, =50 mm, y, = 3 mm,d = 10 mm and 2¢p = 78°.

Here we have restricted ourselves to bar shaped specimens. For
specimens having a form other than a rectangular bar, equations 2.13 and
2.14 will have to be replaced by similar ones, describing the beam path
length in those specimens.

2.4.2 Integration over the sample volume

When the diagonal length is not small compared to the flight path, the
correction factors must be calculated from an integration over the
sampling volume. For this purpose, the equations for the lines that form
the boundaries of the rhombus must be calculated. Subsequently, the
integration over the rhombus can be performed. The integration over the
vertical co-ordinate (z) is not necessary as nothing changes in that
direction during a 2¢p-scan. The function to be integrated is equation 2.12,
in which D is replaced by one of the equations 2.13 or 2.14. So
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[f P00 (1y,20) 1 (xy,2) dxdy
fl2p) = = (2.16)
H O] (xy,20)1,(x,20) drdy

ombus

The functions I (xy) and Iy(xy) in equation 2.16 are intensity weight
functions for the primary and secondary beam respectively. They depend
on the parameters that determine the beam geometry. As is shown in
figure 2.13 there exist regions of different intensity in the rhombus, their
locations depending on how the geometrical parameters are chosen. The
derivation of the intensity weight function can be based on a trapezoid
shaped intensity functjen of both the primary and the secondary beams.
The exact beam intensity pattern is governed by the beam divergence a;;
the counter divergence a,, the distance of the beam apertures to the
sample region: /, and /, and the width of both apertures w, and w,. The
calculation of the intensity weight function is straightforward although it
involves a lot of awareness of the factors contributing to the geometry.

By far the most important parameter for the attenuation effect is the
orientation angle . As an example, in figure 2.14 the effect of the
specimen orientation angle ¥ on the peak position shift due to the
attenuation effect is shown. The calculations leading to the plot are
performed using a computer program that takes care of the above
described geometry. The conclusion of the simulations that led to figure
2.14 is that the absorption correction should not be omitted whenever the
effect is different for the peaks that have to be measured in order to
determine a stress state.
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3

Theory of Elasticity for
Stress Measurements

3.1 INTRODUCTION

When a force is applied to a material, the material is said to be in
stressed condition. Stress is defined as the amount of applied force per
unit area.

Stress is a quantity used by constructors, in order to qualify the
strength of a material or to indicate how far from the ultimate strength
a material in a piece of work is loaded in a specific construction.

Usually, a material is subject to two classes of stress.

1. Applied stress, which is a result of using the construction for
what it has been designed.

2. Residual stress, which is a result of fabrication processes
(rolling, welding, forging etc.) and/or wear processes during use.

The actual loading of the material is due to the sum of both the applied
and residual stresses.

Stress is a quantity that cannot be measured. There are, however,
numerous possibilities to measure one of the direct consequences of
stress. To mention a few: elongation (i.e. strain), change in electrical
conductivity, change of the velocity for the propagation of ultrasound etc.
The stress measurement method that is the subject of the present studies
— neutron diffraction — uses the crystallographic lattice spacing of a
stack of lattice planes as an internal strain gauge. Diffraction stress
measurement methods do not differentiate between applied stress and
residual stress. As the applied stress can usually be accounted for, this
does not pose a serious problem to our measurement technique. Both
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classes of stresses can always be separated. (The opposite is encountered
when the stress is measured by resistance strain gauges. They only reveal
the applied stress level and not the residual stress that was present before
gluing the strain gauge to the surface of the material).

In order to determine the stress state from measured strain data, one
needs a relationship between stress and strain. Only then the engineering
quantity stress can be calculated from the physical quantity strain.
Unfortunately, even strains cannot be measured by means of diffraction.
What can be measured by means of diffraction, are lattice plane
distances. Consequently, in order to perform stress measurements by
means of neutron diffraction, a relationship between the lattice plane
distance and the strain has to be established. Having solved for the strain
one way or another, this can subsequently be translated into stress.

It will be shown, that both stress and strain are represented by
tensors. The strain in an arbitrary direction of a point in space can be
expressed in the elements of a tensor that is defined in an arbitrary co-
ordinate system. The strain tensor in any other co-ordinate system can be
derived from the present one by an adequate co-ordinate system
transformation.

In this chapter, the relationship between measurable quantities (i.e.
lattice plane distances) and the elements of the strain tensor will be
presented. This relationship contains the six elements of the strain tensor
and the stress free lattice parameter. In principle all seven parameters are
unknowns. It will be shown that the solution of all seven unknowns from
a set of seven or more of these equations is impossible, unless some
additional information about the stress state is known. This additional
information will be obtained from so called ’constraint equations’.
Constraint equations will be given for some specific experimental
circumstances.

The mathematical representation of the process described above, will
fill the major part of this chapter. Its development has led to a computer
program that takes care of all the data reduction steps necessary for
determining the stress state from measured diffraction data. In that
program, the theoretical aspects of the form and position of diffraction
peaks that were discussed in the previous chapter, are also involved.
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3.2 THE STRAIN TENSOR

First the specimen co-ordinate system Oxyz is defined. With respect to
this co-ordinate system the second order strain tensor ¢; is defined. The
diagonal elements of this tensor represent the strain in the axis directions;
the off-diagonal elements represent the shear in planes containing two of
the axes of the system. The strain tensor fully describes the strain state
of a small volume element in a material. Fully written, the tensor has the
following shape

1 € &n
(3.1)

€;i = | %12 €2 €3

€13 &3 &3

The main advantage of writing the strain tensor this way is that the
— numerically attractive — diagonalization of the matrix of equation 3.1
automatically yields the principal strain tensor. This in contrast to the so
called Voigt notation, which we will come across later in this chapter. The
diagonalization of equation 3.1 corresponds to a co-ordinate transfor-
mation to the so called principle co-ordinate system, which is the unique

system in which the shear stresses (the off-diagonal elements of 3.1)
vanish.

e, 0 O
el =10 s? 0 (32)
0 0 &5

The transformation of a strain tensor on the principal co-ordinate
system is always possible because the strain tensor is symmetric, so that
the matrix that describes the tensor has three undependent eigenvectors
which are mutually perpendicular.

Transformation of tensors is generally described by the following
equation

£ = CuCiE (3.3)
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In equation 3.3 ¢; symbolizes the cosine matrix that gives the relation
between the co-ordinate systems before and after transformation. Of the
many cosine matrices possible there is only one that transforms ¢; such
that ¢'; is the principal strain tensor.

An alternative notation for the strain tensor is the Voigt notation
[3.1]. The Voigt notation has the advantage that tensors of the fourth
order, like the elastic bi-tensor which will be discussed in the next section,
can appear as a matrix. The Voigt notation for the strain tensor is

€, £,

€0 €2
A e (34)

l 2812 284

2 2

\2823 25

For the stress tensor o;; that will be encountered in the next section
analogous rules apply as for the now presented strain tensor.

3.3 STIFFNESS AND COMPLIANCE

The relationship between the stress tensor and the strain tensor is given
by Hooke’s law [3.2]. The tensor that characterizes this relationship
is called the elastic stiffness tensor. It is a fourth order symmetric tensor

0, = Cufy (3.5)

Equation 3.5 represents 9 algebraic equations, each equation having
9 terms at the right hand side. As a consequence, the elastic behaviour
of a material is described with 81 constants. As C;;, must be symmetrical
due to the symmetry of o; and ¢, only 36 different constants remain. It
can be proved that also

klij
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This reduces the number of independent variables to 21. This amount of
variables suffices to describe the elastic behaviour of a material that
possesses the largest possible anisotropy. A material that obeys equation
3.5 is called linearly elastic. Some materials, especially textured materials
(i.e. showing preferred orientation of crystallites) do, in principle, not
behave according to linear elastic laws.

Depending on the symmetry of the crystal structure, the number of
independent constants that appear in equation 3.5 can dramatically be
reduced. The minimum required amount of variables, however, is limited
to 2. In that case the material is called elastically isotropic. For isotropic
materials equation 3.5 becomes

vE E

%S @) e Ty o0

where

d; : the Kronecker symbol (6; =1fori =j;6; = 0fori #j);
v : Poisons ratio;
E : Youngs modulus.

In Voigt notation equation 3.5 is written
0, = Cg; (3.8)

The inverse of the stiffness tensor is called the compliance tensor Siu
so that in Voigt notation

CS, =9,

iy jk ik

(3.9)

3.4 MEASURED QUANTITIES

The strain tensor ¢;, defined relative to the co-ordinate system Oxyz that
is fixed in the sample may be determined from a number of measure-
ments of the strain e in different directions. In the introduction it was
pointed out that the strain value cannot be directly obtained in a
diffraction experiment. For the next derivation, however, we will forget
this for a while. In the course of the derivation it will become clear how
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to express the elements of the strain tensor in quantities that can be
measured: lattice plane distances.

The different directions are obtained by choosing different sample
orientations with respect to the scattering vector g. If for the i strain
measurement, the direction of e is defined by the direction cosines (k/m,)
then

= k2 2 2
e(kim) = ke + l'e,, + m7e;; +

D!
+ 2kle, + 2kme, + 2Ame,,

(3.10)

The derivation of equation 3.10 is based on the elongation of a unit
vector k = (kim,) placed in a strain field represented by ¢;. During this
derivation, quadratic terms in the elongation expressions are systematical-
ly ignored. It is a cumbersome piece of work that is given in most
textbooks on mathematical elasticity [3.3].
The left hand member of equation 3.10 can be written as
d(klm) — d,

e(klm) = — ¢

| (3.11
il 1 d )

0

In equation 3.11, d(kJm,) is the lattice spacing for lattice planes oriented
according to k, d,, is the lattice spacing when no stress is present. In 3.11,
the numerator is typically 10* smaller than the denominator. Therefore
d, in the denominator can without noticeable error be replaced by
d(klm,)), the average value of the d-values that have been measured
and thus take part in the stress determination. In fact d, could be
replaced by any d-value as long as the thereby introduced relative
systematic error in d can be neglected compared to the measurement
error in d(kJm,) relative to d(klm;) — d,. An analogous substitution takes
place in the derivation of the so called sin’p-method, the two dimensional
analogue of this method [3.4].
Consequently

dklm) — d, dkim) — d,

[ [

d,  @kim)

r o

(3.12)

For convenience we will write: d(k/m,)) = d and consequently, using
equation 3.12, equation 3.10 can be rewritten as
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d(kim,) 2 2 2
— = djd + ke, + l’e,, + m?., + (3.13)

+ 2ktlt'£12 + 2kzrnz£13 + 211m1£23 |

Suppose that at one co-ordinate in the sample n diffraction peaks were
measured. This results in n equations of the type of equation 3.13.

Together they form a system of equations of the form

( 2 2 2
d(klm) 1 ki I my kl km, Im, 4d
d(kim,) | |1 ks L my ki, kym, Lm, £,
2
d(kfym)) | 1k B om3 kg kymy Im || e
- _ £, (3.14)
24
2e5
2 2 2 2¢ 3
dklm)| \l k, I, m, kl km Im

The solution of equation 3.14 should give us the elements of the strain
tensor and the stress free lattice parameter. In the following section it will
shown how to conduct this solution process.

3.5 STRAIN CONSTRAINTS AND SOLUTION

Equation 3.14 represents a system of n equations with a maximum of 7

unknowns which we would like to solve for. Equation 3.14 can be written
as a matrix equation

Ke =d (3.15)

In equation 3.14, (kim,) represents a direction in the specimen co-

ordinate system. Because it is a unit vector its elements should obey the
following relationship
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k,.2 + l,-2 + m,2 =1 (3.16)

Equation 3.16 makes it impossible to solve equation 3.14 when dyd, €,
£,y €+, are unknown at the same time. This can be understood as follows.
The design matrix K of equation 3.15 can always be shuffled such that
one column becomes the null vector. (i.e. by subtracting the sum of
columns 2, 3 and 4 from column 1, see also equation 3.14). This
phenomenon, known by the term ’column degeneracy’ prohibits the
solution of the related system of linear equations. This is the mathema-
tical formulation of the impossibility to detect a hydrostatic component

Dj
4 p 00
p;=1| PO
p

(3.17)

One can never differentiate between the presence of a hydrostatic
component in the stress state and a lower or higher value for d,.
A solution to the problem of solving equation 3.14 is, that in addition to
this system, constraint equations have to be given. The most trivial
constraint evidently is: knowing dy/d. In that case, equation 3.14 reduces
to n equations with 6 unknowns, which has a unique solution for n = 6
(when n > 6 this means a solution in a least squares sense).

Another type of constraints concerns relations between the strain
tensor components e.g.

plane strain : £53=0
uniaxial stress @ £, = —VEy; €33 = ~VE,

A residual stress measurement should be planned such that the number
of equations plus the number of constraints is larger than the number of
unknowns (here: always 7). Only then it is possible to solve the system in
a least squares sense, provided that no column degeneracies are
introduced by the form of K which is after all related to the way the
experiments are planned.

The constraint equations could be simply added to the system of
equations defined by equation 3.14. When this completed system is solved

3.5
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in least squares sense, the constraints will not exactly be obeyed, because
a constraint gets the same weight as a measurement equation. A solution
to this numerical problem is to give the constraint equations a weight
many times larger than the measurement equations. This method has an
important disadvantage: an error analysis procedure is no longer possible
after solving the completed equation 3.14. A more elegant way of incor-
porating the constraints is to write them in a matrix form

e = Ae + ¢, (3.18)

A is a square (7 X 7) matrix that is usually singular. We will call 4 the
strain constraints matrix. g, is called the strain constraints vector. In case
of a uniaxial stress, equation 3.18 becomes

4y 1 0 00000)[%? 0
fn 0 1 00000/|]|°%n 0
€2 0 -» 00000]|]|°% 0
en =0 voooool||&s |+]o| G9
21, 0 0 00000O0]||2%n 0
21 0 0 00000 ]||2y 0
2¢ 3 0 0 00000/ |2, 0
Another example is that d;, is known in the sense that dj/d = «
dyjd 0000000)][%? K
1 0100000]]|°%n 0
£n 0010000]]°% 0
€3 |=10001000 €y |+ |0 (3.20)
26 0000100]|]|2%n 0
2¢ 1 0000010]|[2; 0
2¢ 3 0000001 2, 0
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Now let equation 3.18 represent m independent constraints, then 4 is a
(7 x 7) matrix of rank (7 — m). A is thus singular for m > 0.
Now, equation 3.18 can be substituted in equation 3.15

Kde + €) =d (3.21)
which can be rewritten as
KAe = d - Keg, (3.22)

Each constraint corresponds to a null vector column in 4, so equation
3.22 is in fact the representation of n equations with 7 — m unknowns.

Equation 3.22 can be solved using a numerical method called
Singular Value Decomposition (SVD) ([3.5][3.6]. SVD solves
equation 3.22 for any value of n as long as n = 7 — m. The method is
also useful to investigé/te the equation as SVD can detect column
degeneracies in K4, the design matrix of the system. This may be of help
when planning experiments on a material that contains a stress state for
which the constraints are not very transparent from a mathematical point
of view. Equation 3.22 has an exact solution for n = 7 — m. For
n > 7 — m, SVD solves in a least squares sense. Altogether, equation
3.22 has a unique solution provided the matrix K4 has no column
degeneracies.

From the solution of equation 3.22 the complete strain tensor in
Voigt notation is obtained using equation 3.18. When the strain tensor is
written in the form of equation 3.1, it can be diagonalized. This process
yields the principal strain tensor according to equation 3.2 and a cosine
matrix that gives the orientation of the principal strain tensor with respect
to the sample co-ordinate system. Mathematically, the diagonalization can
be regarded as an eigenvalue problem. The elements of the diagonalized
matrix are the eigenvalues, while the eigenvectors give the principal co-
ordinate system. An adequate numerical method for this problem is the
Jacobi transformation method that is both fast and accurate [3.7].

When the strain tensor has been solved, the stress tensor o; can be
derived from it using Hooke’s Law (equation 3.8).
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3.6 STRESS CONSTRAINTS

In the previous section it is assumed that the strain constraints vector and
matrix are known. Constructing them when the strain constraints are
known is rather straightforward. In most practical cases, however, the
mechanical constraints are known in terms of stress rather than in terms
of strain. The subject of this section is to transform constraints known in
terms of stress into terms of strain.

Consider

o0 =Bo + o0, (3.23)

For obvious reasons, B and o, are called the stress constraints matrix and
vector respectively. Because the relation between stress and strain is
known, it is possible to express stress constraints in terms of strain
constraints. In practice this means a translation of 3.23 in terms of
equation 3.18, according to the following relationships

e = So (3.24)
and
o = Ce (3.25)

In equations 3.24 and 3.25, S and C are augmented by a 0" row and
column of zero’s and a diagonal element equal to 1 in order to take care
of the 7" unknown, dy/d. Combination of equations 3.23 to 3.25 yields

&€ = SBCe + Sa0 (3.26)

Because equation 3.26 has to be valid for all o and & it is possible to
identify

A = SBC (3.27)
and

£, = So, (3.28)

The thus found A4 is not unique. Suppose B contains the following
relationships
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Ul = 0'1
o, =0, (3.29)
0'3 = 0’1

g, =0,
o, =0, (3.30)
0, = 0,
or as 4
o, = Yo, + 0,
g, = Y0, + 0, (3.31)

o, = Yo, + 0,

Generally, equation 3.27 leads to a strain constraints matrix of a non
trivial form. But, as the constraints may be expressed in infinitely many
ways, one apparently has the right to shuffle 4 into any form without
losing information about the constraints.

In order to prescribe a-recipe for a shuffling process to be applied,
first a desired final form of the strain constraints matrix should be
defined. This will be the next step to undertake.

It is evident that each given stress constraint can be translated to one
strain constraint. (The number of unknowns in terms of stress will be
equal to the number of unknowns in terms of strain). From the stress
constraints matrix B it can be seen which stress components are known
(or otherwise: which stress components can be expressed as a linear
combination of other stress components). The column in B, corresponding
to such a known component contains only zero’s i.e. equals a null-vector.
The shuffling process should be such that columns in 4, corresponding to
null-vector columns in B, are also made equal to null vectors.

Diagonal elements in B that correspond to unknown stress com-
ponents (or stress components that cannot be expressed as a linear
combination of other stress components) are — in B — equal to 1. The
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shuffling procedure to be defined should be such that corresponding
diagonal elements in 4 are also equal to 1.

The proposed shuffling process will be illustrated by the example of
a rotation symmetrical plane stress

Op =0y
0, =0 (3.32)
0 =0;3=0,=0
So the B-matrix takes the following form
1000000
0100000
0100000
B=[0000000 (3.33)
000000O00O0
000000O00O0
000000O00O0

For this example we choose matrices C and S (from the equations 3.24

and 3.25) belonging to isotropic cubic materials. So the stiffness matrix
becomes

10 0 0 0 0 ©
0c,C,C, 0 0 0
0c,C,C, 0 0 0
c=10C,C,C, 0 0 0 (3.34)
o0 0 0C, 0 0
o0 0 0 0C, O
o0 0 0 0 0 C,

where
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C. = E(1—-v)
T A+v)(1-2v)
C. = Ey
2 (1+v)(1-2v)
C44 = ____E_
2(1+v)

and the compliance matrix becomes

1 0 0 0 O O
‘ S Su Si 0 0
4
0 12 P11 °n 0 0
S = 0512512511 0 0
0 0 0 O S‘,'4 0
0O 0 0 0 O Su
00 0 0 o0 O
where
i
i 1
S, = =
i 11 E
S =:l’_
12 E
2(1+v)
S =
“ E

From equation 3.33 to 3.37 is easily seen that

o O o o o O

(3.35)

(3.36)

(3.37)
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A = SBC =
1 0 0 0 000
0 1-2v+v? v(1-v) v(1-v) 0 0 O
0 1-2v+v? v(1-v) v(1-v) 0 0 O (3.38)
1
— _ _ o2 o2
Ty |0~ -~ - 000
0 0 0 000
0 0 0 000
0 0 0 000

We now perform the following shuffling process. The 2™ column of A

(equation 3.38) is divided by 1y and both the 3™ and 4™
(1+v)(1-2v)

v
1+v)(1-2v)
4 become equal. At this stage two of these three columns are replaced by
the difference of any of the three, which is, as all three are currently
equal: the null-vector. After these shuffling operations only one of the
columns remains non-zero. So the operation finally results in

columns are divided by . The result is that column 2, 3 and

1 0 00000O0
0 1 00000
0 1 00000

4=10 =% 00000 (3.39)
(1-v)
0 0 0
0 0 0
0 0 0

which is the strain constraint matrix for the set of stress constraints
belonging to this problem.
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3.7 ERROR ANALYSIS

The experimentally determined d-values contain errors which can be
characterized by standard deviations Ad. At this point we want to
establish the effect of the standard deviations on the solution of

Kde = d - Ke| (3.22)

which was derived in the foregoing sections. Depending on the form of
equation 3.22 these errors will have an effect on the final solution vector
¢. In order to perform an error analysis that makes sense, the different
equations of 3.22 should be weighted according to the individual standard
deviations Ad,. In this section we will show how this weighting process is
incorporated in the theor‘}{0 presented so far.

In equation 3.22, K4 is a {n X (7 — m)} matrix; € has (7 — m)
elements; d — Kg, has n elements.

Mathematically, the weighting is performed by left-multiplying both
sides of equation 3.22 by a weight matrix G. This results in

GKAe = G(d — Ke ) (3.40)

Assuming the individual errors Ad; are mutually independent (which will
be the case for errors based on counting statistics), the G matrix is a
diagonal matrix with elements

d
L= 341
u Adl ( )

The proposed least squares method of SVD will now have to minimize
P =[G - Ke)) - GKAe|’ (3.42)

instead of
r = “(d - Ke) — KA8||2 (3.43)
Using the now defined matrix G, consider the following matrix product

V= {(GKA)T . GKA}-I (344)
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Equation 3.44 is called the unscaled covariance matrix for the solution of
equation 3.40. V is scaled with

2 _ IIGKAE - G(d - K80)||2 (345)

x n—(7-m)

The elements of x°V have a statistic interpretation. The square roots
of the diagonal elements are an estimate of the standard deviations Ag;
in the corresponding elements of the solution vector &.

The vector Ae only represents the errors in the unknown strains. The
uncertainty in the strain elements that were hidden by the strain
constraints can be obtained by applying a standard error transfer
procedure using the strain constraint matrix 4

. Ag, = '27:(aijAej)2 (3.46)

In equation 3.46 a; are the elements of A.
From equation 3.46 the uncertainty in the stress vector is derived by

applying
7
AOi = E (cijAej)z (347)
j=1

where c; are the elements of C, the stiffness tensor in Voigt matrix
notation.
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4
Development of the Stress

Measurement Set-up

4.1 INTRODUCTION

In the preceding chapters, the theory of stress measurements by means
of neutron diffraction has been presented. Much attention has been paid
to how stresses can be obtained from diffraction data. Until now, little
has been said about the actual instrument that is used to perform these
experiments. ‘

The instrument that has been used for the present measurements is
a temporarily reconstructed neutron powder diffractometer. To be more
specific, the powder diffractometer situated at the horizontal beam port
no.5 (HBS) of the High Flux Reactor (HFR) at Petten, the Netherlands.
This instrument has been used for a long time to obtain powder
diffraction patterns of various solid state materials. From these powder
diagrams, the crystallographic structure of a material is determined using
advanced refinement techniques [4.1].

The crystallographic structure of a material of which one likes to
obtain the stress state will usually be known, so the main interest will be
emphasized on the precise determination of lattice spacings at a well
defined spot in a specimen under investigation.

The contents of this chapter are focused on the constructive parts
that have to be connected to the powder diffractometer in order to
transform the latter into a stress measurement facility. This is followed
by the description of the way these parts should be aligned in the beam
geometry of the original diffractometer. Experience has shown, that the
alignment quality of the instrument is the major factor in successfully
performing stress measurements. Besides practical information about the
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Fig. 4.1 Principle of the powder diffractometer at HBS in the HFR at Petten.

alignment procedures, a mathematical background for the alignment
procedures will also be presented.

4.2 THE POWDER DIFFRACTOMETER

Before going into the details of the alignment procedure, we will give a
brief outline of the basic set-up, which is a horizontal neutron powder-
diffractometer. An schematic overview of this instrument is given in
figure 4.1.

4.2.1 Beam handling

A polychromatic (white) beam leaves the reactor core through a beam
tube. The dimensions of the tube are chosen such that the divergence of
the beam that leaves the tube is about 1°. The spectrum of the white
beam is of a Maxwellian shape, which is determined by the operating
temperature of the reactor [4.2]. The white beam passes a Soller
collimator, built from a stack of neutron absorbing vertical lamellae. The
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horizontal divergence of the beam after collimation is 0.5°. This Soller
collimator can be replaced by a 0.17° collimator or by no collimator at all
by a remote control collimator exchange installation. All our experiments
have been performed using a 0.5° collimator. The influence of the
application of different types of collimation on the resolution of a powder
diffractometer is given in a standard work by Cagliotti ez.al.[4.3].

The collimated white beam impinges on the (111)-planes of a set of
copper single crystals, which is called the monochromator. The angle of
incidence is 38° with respect to the monochromator surface. The take-off
angle is again 38°. The wavelength of the obtained monochromatic beam
can be obtained from Bragg’s law

2d,,,sinf = nA (4.1)

where
du lattice spacing of the reflecting planes (hkl);
diffraction angle;

6:
n: integer number, indicating the order of the reflection;
A wavelength of the diffracted radiation.

As the lattice distance for (111)-planes in Cu is d,;, = 0.2087 nm, it is
seen from equation 4.1, that the first order (n = 1) wavelength of the
monochromatic radiation is A = 0.257 nm.

The monochromator consists of a stack of 9 single crystal Cu-slabs.
The slabs can be individually rotated around a horizontal axis lying in the
crystal surface, which is parallel to the (111)-planes. Using this rotation
possibility, the monochromator can be made to act as a curved mirror for
neutrons that leave the reactor vessel. The radius of curvature, necessary
for imaging the reactor vessel opening in the beam tube at the centre of
the diffractometer, is calculated from the geometrical parameters that
define the system. The equation that describes this radius of curvature is

adopted from elementary optics. We will not derive it here but merely
give it as
2sinf
1,1 m (4.2)
So 5, R _

where
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so- distance from the reactor vessel to the monochromator;

s,: distance from the monochromator to the diffractometer centre;
0,: diffraction angle for the monochromator;

R: radius of curvature of the set of monochromator slabs.

The purpose of the focusing action of the monochromator is to increase
the neutron intensity at the site of the specimen.

After monochromatization, the beam is aimed towards the centre of
the diffractometer, where the sample is mounted. The sample holder is
connected to a table with a single rotation possibility with characteristic
angle w. Around the sample a set of 4 neutron counters of the *He type
can be rotated. The axis of rotation coincides with the w-axis. The counter
position is called 2¢. The use of 4 counters instead of one reduces the
total time necessary for measuring a complete powder diagram.

On its way from the reactor vessel to the sample, the neutron beam
encounters three pyrolytic graphite filters. Their purpose is to selectively
absorb neutrons, that have a wavelength of anything shorter than 0.22 nm
[4.4], thus suppressing the neutron beam diffraction components of
higher order (n = 2, 3, etc. in equation 4.1 ).

4.2.2 Operation

The operation of the instrument is fully computerized. The scan
parameters like scan range, step size and counting time are defined by
the experimentalist and subsequently a dedicated computer performs the
experiment.

An important feature of the set-up is the use of a neutron monitor
counter situated in the primary beam. At the cost of a small fraction of
primary neutrons, the measurement computer determines the integral
amount of incoming neutrons. After the detection of a predetermined
amount of neutrons in the monitor counter, the measurement continues
at the next counting position. The advantage of this approach is that the
power level of the neutron source — the reactor — does not influence the
measurement results.
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Fig. 4.2 Photograph showing the apertures that determine the size of the sampling volume
in the specimen by limiting the size of the primary and diffracted beams. The size of the

apertures can be adjusted by micrometre screws on top of the aperture assemblies.

4.3 ADAPTATIONS FOR STRESS MEASUREMENTS

The diffractometer described in the previous paragraph requires some
reconstruction in order to serve as a stress measurement facility. The two
major adaptations are the installation of sample volume defining
apertures and a specimen co-ordinate table. Both will be treated in this
section.

4.3.1 The beam apertures

In powder mode, the size of both the relevant part of the primary beam
and the diffracted beam is determined by the size of the sample, which
is fully bathed in the neutron beam. For stress measurements, the size of
the inspected volume in a specimen — the sample- or gauge volume —
has to be smaller than the overall specimen. The sample volume size
determines the spatial resolution of a stress measurement. In order to
obtain a reasonable spatial resolution, the sizes of the primary- and
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Fig. 4.3 Photograph showing an overview of the employed stress measurement set-up.
Clearly visible are the xyz movement possibilities as well as the movable beam apertures.

diffracted beams are reduced. This is achieved by placing cadmium plated
apertures in the primary and secondary beams. The apertures are shown
in figure 4.2. In the present situation, the cross-section of these apertures
can be adjusted between 0 mm X 5 mm and 4 mm X 25 mm. The
apertures are connected to slide systems, that permit the adjustment of
the aperture to specimen distance. This degree of freedom is necessary
for the flexibility of the set-up, which means here, that specimens of
various sizes and shapes can be investigated without major modifications
of the set-up. Also the orientation of a specific specimen might influence
the positions of the apertures.

The primary beam aperture moves between the monochromator and
the diffractometer centre. Its slide system is connected to the base of the
diffractometer frame. The secondary beam aperture is connected to the
counter bracket and moves between the diffractometer centre and one
of the 4 neutron detectors. The remaining 3 detectors are covered with
neutron absorbing material. They are not used during stress measure-
ments.
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4.3.2 The co-ordinate table

The second major adaptation is a 3-axes specimen table. For this purpose
a commercially available xy-translation table is connected to a vertical
displacement unit. The latter is home made (see figure 4.3).

Stress measurements as a function of any of the co-ordinates x, y and
z can now be performed by transport of the specimen, while the sample
volume as defined by the intersection of the beam paths defined by the
two apertures remains stationary.

4.3.3 Operation
The adaptations described above are all transporting mechanisms. All are
stepper motor driven on command of the measurement computer. The
second task of that computer is to read the neutron counting register.
The computer program that operates the instrument can be program-
med to perform 16 different scans continuously one after another. For
each of these scans, all variables can be set to any value while one of the
variables — the scan parameter — is programmed to step between two
extremes employing a certain step size. The scan variable can be chosen
to be any motor position, except the positions of both the primary and
secondary apertures. In Table 4.1 an overview is given of the movement

Table 4.1

The motor movement possibilities of the stress measurement facility situated at
HBS at the HFR in Petten. The figures given are those valid without the
presence of a specimen. When a specimen is situated on the specimen table
one ore more figures in the column ’range’ could be erroneous.

movement range smallest encoder scan
step possible
20 —2°- 140° 0.01° yes yes
w 0° - 360° 0.01° yes yes
x 0-60 mm 0.005 mm no yes
y 0 - 60 mm 0.005 mm no yes
z 0 - 140 mm 0.0002 mm no yes
P 0-55 mm 0.04 mm no no
s 0- 120 mm 0.04 mm no no
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possibilities of the powder diffractometer in stress measurement mode.
In Table 4.1 also the presence of an encoder is mentioned. An encoder
is a piece of hardware that is capable of reading the position of a certain
movement, independently of the command history of the movement.
Using an encoder is advantageous, because the position of a motor
becomes absolute rather than relative. This is useful when restarting the
system after having switched off the mains supply as well as for automatic
position checks during an experiment.

4.3.4 Pyrolytic graphite filters

The pyrolytic graphite filters that are used in the powder diffraction mode
in order to suppress the intensity of higher order neutrons, are removed
during stress measureme{lts. The aim of this is to recollect some first
order intensity and all of the higher order intensity that is otherwise
removed from the beam. The higher order neutrons do not harm the
experiment as they are diffracted at exactly the same scattering angle as
the first order neutrons. The fact that higher order neutrons give rise to
the appearance of extra peaks in the powder diagram does not harm in
stress measurement mode, unless the diffraction peaks are very wide and
overlap with each other. The effects of the presence of higher order
wavelength components in the neutron beam on the appearance of a
powder diagram is shown in figure 4.4. In this figure two powder
diagrams of pure iron are given. One diagram is measured with all
pyrolytic graphite filters present, while for the other one they are all
absent. The intensity scale of both diagrams is scaled such that both
curves correspond to the same measurement time. Consequently, the
intensities are directly comparable. The major difference between the
diagrams is the amount of diffraction peaks present. In the situation
where no filters are employed, not only the first order reflection of
A = 0.257 nm is present, but also the second and third order reflections
corresponding to wavelengths of A = 0.128 nm and A = 0.086 nm respec-
tively, are present.

For crystal structures possessing a simplicity comparable to that of
the b.c.c. structure of Fe, the advantage of applying no filters at all is
obvious: the peak intensity of the (110) diffraction peak of Fe is
improved by a factor of about 2.5 while the peak to background ratio is
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Siltg :4 Comparison of -tvf/o powder diagrams. The solid curve has been obtained in a

X u: lon where no pyrolitic graphite filters were present in the primary beam path. The
roken curve has been obtained in the situation where three graphite filters were present

th dramatic.ally altered (the relatively high background in the no-filter
diagram of figure 4.4 is due to poor shielding; this has been improved).

4.4 ALIGNMENT OF THE DIFFRACTOMETER

The alignment requirements for the diffractometer and specimen during
s'tress measurements are more strict than for powder measurements. The
first reason for this is that the characteristic dimensions of the sample
volume, defined in a specimen, are small compared to a specimen that is
employed in powder diffraction. Secondly, in order to perform stress
measurements as a function of any co-ordinate, the position and
orientation of the sample region in the specimen geometry should be
known. During the service of the stress measurement set-up, a sequence
of' proce.dures has been developed that has proved to yield a1,1 adequately
al{gned instrument. These procedures will be treated in this section. The
alignment requirements are the following. '
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1. The centre line of the primary beam should point within 0.02
mm to the centre of the diffractometer. This should be the case
regardless of the position of the primary beam aperture, which
means that the primary beam aperture sliding system should
have its sliding direction oriented parallel to the direction of the
primary beam. .

2. The centre line of the diffracted beam should contain the centre
of the diffractometer within 0.02 mm and the sliding direction
of the diffracted beam aperture should be along an angle 2¢p
with the primary beam (2p is determined by the Soller slit that
is situated directly in front of the detector). .

3. The co-ordinates x and y at which the specimen surface coin-
cides with the central axis of the diffractometer should be
known within (f(();Z mm.

4. The direction of the tangent to the (curved) specimen surface
with respect to direction of the direct beam should be kpown.
The reason is that the angle ¥, necessary for the definition of
the scattering vector ¢ in the sample axis system, should. be
known in order to solve for the stress tensor. The required
precision is 0.01°.

In order to achieve adequate alignment, ie. satisfying the above stated
conditions, a series of test experiments has been developed: These
procedures will be treated in order of appearance n the alignment
procedure.

4.4.1 Levelling the diffractometer.

For the demanded accuracy in the alignment, a horizontal placerr.lent of
the diffractometer is of importance. A very consistent horizontal
reference plane is the plane given by a spirit level, whi.ch is used to level
the diffractometer and all the instruments attached to it. The éccuracy of
the employed spirit level is 0.1 mm/m. Adjustment Screws fixed to the
frame of the diffractometer help to achieve this levelling.

4.4 Alignment of the diffractometer 65

4.42 The central axis of the diffractometer

The location of the central axis of the diffractometer plays an important
role in the alignment. So after levelling, the second step in the alignment
procedure is to find it. For this purpose a special tool has been manufac-
tured: a precision cylinder, which can be mounted on the specimen table.
The cylinder (& = 20 mm) is made with such close tolerances that the
axis of the cylinder is exactly perpendicular to the mounting pléne. On
top of the cylinder an exactly co-axial steel pin (@ = 1 mm) can be
attached. Using the w-motor, the cylinder and pin are rotated around the
central axis. A dial gauge, connected to a fixed point somewhere on the
diffractometer frame, is used to monitor the position of the circumference
of the cylinder. By rotating w and using both the x and y motors, the
cylinder is translated such that the dial gauge indicator does not move
more than 0.01 mm during one complete w-revolution of the cylinder. The
axis of the concentric pin placed on top of the cylinder will now be the
physical central axis of the diffractometer.

Both the primary and secondary aperture can now be moved such
that they point exactly towards the central axis. The establishment of
electrical contact between the aperture sideplates and the steel pin is
used as an aid to find the correct aperture location. In this way, one of
the points that determine the directions of both aperture sliding systems
is physically determined. The exact orientation of the slides (i.e. deter-
mining a second point along the correct sliding direction) will be obtained
later in the alignment procedure. First, the direction of the primary
neutron beam should be established.

4.43 The direct beam position.

In the not yet aligned condition, the position of the neutron detector is
relative to the zero position of the encoder that reads out the position of
the 2¢p-motor. In order to make this position physically meaningful, the
position of the 2p-motor must be known relative to the position of the
primary beam. The experiment to be performed is a very simple one: a
scan of the direct beam. For this scan the primary beam aperture is
opened to about 1 mm and the secondary beam aperture is opened to
about 5 mm. In this configuration, a 2¢-scan is performed in the vicinity
of the direct beam. This will yield a more or less Gaussian shaped
intensity profile as a function of 2. An example of a direct beam scan is
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Fig. 4.5 An example of the scan around the direct beam. The solid line represents the
result of a Gaussian fit to the measured data points. The direct beam has been attenuated
in order to prevent an electronic overflow of the neutron counter. The attenuating material
is a 3 mm thick piece of neutron absorbing material like PVC.

Table 4.2

Fit result for a Gaussian function on the data of a the direct beam
scan. (cf. figure 4.5). For this fit x* = 19.5

fit parameter value error unit
2po 6.473 0.004 degr.
OFwHM 0.514 0.008 degr.

I, 41.4 7.2 counts

I, 9443 226 counts
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Fig. 4.6 Experimental configuration during a the single knife edge scan. The single knife
assembly can be transformed into a double knife edge by placing a second cadmium wedge
in the yet open sleeve on the left of the wedge shown here.

given in figure 4.5. The maximum intensity position 2, is obtained by
fitting a Gaussian (see Chapter 2) to the direct beam scan data. The thus
found 2, is the offset value for the detector angle. The Full Width at
Half Maximum oOpwyy Of the fitted Gaussian is interpreted as the
divergence of the primary beam. Typical fit results are given in Table 4.2.
The 2¢p, position is needed for two reasons.

1. It makes the to be measured diffraction peaks as an absolute
measure, which is needed for the precise determination of lattice
plane distances.

2. The single knife edge scan and the double knife edge scan being
the next alignment steps, have to be performed while the
counter is situated at 2¢p,,.
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gle knife edge scan. The solid line is the final result of a
ng procedure using the single knife edge function described in

. Table 4.3
Fit result for the function described in Appendix 1 on the data of

a ‘sing]e knife edge scan (¢f. figure 4.7). The distance from the
primary beam aperture to the diffractometer centre d has been fixed
to 30 mm. For this fit y* = 2.2

fit parameter value error unit
X 10.437 0.004 mm
w 0.998 0.014 mm
a 0.456 0.049 degr.
1, 175.5 6.5 counts
A 11392 143 counts
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4.4.4 The single knife edge scan
This part of the alignment is meant to obtain the first out of two points
that define the direction of the neutron beam.

The counter is positioned at the direct beam position 2¢,. On the
specimen table a device called the single knife edge is mounted. The
single knife edge is a brass wedge covered with cadmium (a neutron
absorbing material) which is connected to a holding piece as is shown in
figure 4.6. The angle w is chosen such that one of the motors x or y
transports the knife more or less perpendicularly to the primary beam. In
this configuration, the relative position of the knife (e.g. x) is used as a
variable in a scan. This scan gives the direct beam intensity, as a function
of the relative position of the knife edge while it is step by step covering
the primary beam (see figure 4.7). The function that is given in Appendix
1 describes this process.. When this function is used as the model function
in a Levenberg-Marquardt fitting procedure [4.5], the position x,
where the single knife edge coincides with the central line of the primary
beam is obtained. A typical result of this fitting procedure is given in
Table 4.3 which belongs to the data of figure 4.7.

Now one point of the line that defines the direction of the primary
beam is obtained. At this position, the double knife edge scan which will
give the second point of this line, will be performed.

4.4.5 The double knife edge scan

Next to the single knife edge, a second sleeve is present in the knife
holder. In this sleeve a second — identical — knife can be mounted. The
construction of the knives and the holder is such that the connection line
between the two knife edges and the backside of the knife holder is
parallel. The co-ordinate parallel to the beam direction will be chosen
such that the point between the two knives will approximately coincide
with the central axis. At this point a w-scan is carried out, which starts in
the situation that one of the knives is completely covering the primary
beam. The scan ends where the other knife is fully covering the beam. An
example is given in figure 4.8. The intensity maximum that exists between
these two extremes can be found by using the fitting function that is
described in Appendix 2 as the model in a Levenberg-Marquardt fitting
process [4.5]. Typical results of this procedure are given in Table 4.4.
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Fig. 4.8 Result of the double knife edge scan. The solid line is the result of the Levenberg
, Marquardt fitting procedure of the function that is described in Appendix 2.

Table 4.4

| Fit result for the function given in Appendix 2 on the data of a the
double knife edge scan. (cf. figure 4.8). The distance of the primary
aperture to the centre of the diffractometer d is fixed to 35 mm, the
distance between the knives / is fixed to 50 mm and the primary
beam divergence a is fixed to 0.5 mm. For this fit y* = 2.6.

fit parameter value error unit
g 18.275 0.010 degr.
w 0.748 0.006 mm
Al 5.3 0.2 mm
I 178.7 6.1 counts
I, 13836 264 counts
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One of the results of the fitting procedure is w,, the w-value that cor-
responds to the situation that the two knife edges are in line with the
primary beam, so that the back plane of the knife holder is parallel to the
direction of the primary beam. With the specimen table at w,, a steel
ruler is connected to the back side of the knife holder. Using a dial gauge
connected to one of the moving parts of the primary aperture, the ruler
is used as a physical reference to the beam direction. Adjustment bolts
on the primary aperture assembly serve to adjust the slide system in an
orientation parallel to the primary beam.

In order to adjust the secondary aperture sliding system, the neutron
counter is moved to the angle where it is most frequently used during
stress measurements: 2 = 90° and the specimen table is rotated towards
@y + 90° In this configuration the dial gauge is connected to one of the
moving parts of the secondary aperture system, so that also this system
can correctly be aligned with respect to the primary beam.

After all these steps, the instrument is in principle correctly aligned.
All the alignment formulas, however, are derived assuming that the
instrument is already well aligned. In practice, this is not the case,
therefore we have to repeat the double knife edge scan and the following
adjustments, until adjustments of the aperture orientations are no longer
necessary. Usually this can be achieved by repeating the procedure twice.

4.4.6 Checking the alignment of the system

Having performed the actions described in the foregoing sections, the
diffractometer should be wel] aligned. This should, however, be checked
before starting any measurements.

Up to this stage of the alignment sequence, no diffraction has been
used to perform any alignment action. In this section a method will be
treated that uses diffraction as the main too] to determine the state of
alignment of the diffractometer. For this purpose a special test specimen
has been manufactured. It consists of a rectangular box made of thin (0.1
mm thick) vanadium foil. The dimensions of the box are 200 mm X
50 mm X 10 mm. The box is filled with iron powder p.a. and closed with
€poxy resin in order to prevent oxidation. This test specimen is assumed
to have no crystallographic texture, meaning that the diffracted intensity
from any volume in the specimen is equal in all directions given a
constant primary flux of neutrons.
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Fig. 4.10 Entering curve for 9=90°. The solid line belongs to the fit result using the
equation derived in Appendix 3.

Fig. 4.9 Result for the entering curve at y=0°. The solid line belongs to a successful fit
using the function derived in Appendix 3.

Table 4.5

Fit result for the entering curve function for y = 0° that was given
in Appendix 3 on the data of such a scan. (cf figure 4.9). The
scattering angle has been set fixed to 79°. For this fit X =12

Table 4.6

Fit result for the entering curve function for ¢ = 90° that was given
in Appendix 3 on the data of such a scan. (¢f. figure 4.10). The

fit parameter value error unit scattering angle has been set fixed to 79°. For this fit y* = 1.2.
N 29.46 0.03 mm fit parameter value error unit
w 0.97 0.10 mm1 Xg9 39.43 0.01 mm
U 0.075 0.037 cm
: o d w 1.03 0.02 mm
I, gg; h 359 coun tz Zdzgr . I, 1491 22 counts x degr.
I, coun gr. I, 7629 219 counts X degr.
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The test specimen is used in the following way. The aligned
diffractometer is arranged such that the primary and diffracted beam
apertures are both 1 mm open and the test specimen is situated such that
the surface normal vector is parallel to the scattering vector g. Using the
currently available wavelength of A = 0.257 nm, the (110)-reflection of
iron can be found at 20 = 79°. The sample volume defined by the
aperture geometry is a rhombic prism with a smallest angle of 79° having
a height equal to the height of the apertures. In this configuration
successive 2p-scans are performed. After each scan, the specimen is
moved a small distance in the direction of its surface normal. This process
proceeds from the situation where the sample volume is located
completely outside the specimen to the situation where the sample
volume is located completely inside the specimen. The measurement
results are presented as the integrated intensity of diffraction peaks as a
function of the relative specimen position. Qualitatively, the result is an
s-curve starting at a background value in order to arrive at a maximum
where the rhombus is completely embraced by the specimen. Beyond the
maximum, the intensity drops due to the increasing total flight path
through the specimen. This s-curve is called the entering curve aty = 0°.

For a complete alignment check, a second entering curve has to be
measured, during which the normal to the specimen surface is perpen-
dicular to ¢. This results in the entering curve at ¢ = 90°, which differs
slightly from the one at 9 = 0°. The difference is that the intensity does
not drop after the maximum level has been reached, because in this
geometry the flight path through the specimen is not a function of the
relative position of the sample volume in the specimen. The geometrical
functions describing the entering curves at y = 0° and y = 90° are
presented in Appendix 3. These functions are used in a Levenberg-
Marquardt parameter adjustment procedure [4.5]. This yields two
different results for the relative co-ordinate table position when the
rhombic prism is half way in the specimen: x, and xo. The results for bgth
y-values should be within their respective experimental error limits which
are calculated by the parameter adjustment procedure. If for some reason
this result is not obtained, the alignment procedure has to be repeated.
Examples of the y=0° and the 1 =90° entering curves are given in figl.lres
4.9 and 4.10 respectively. Examples of their respective fit results are given
in Tables 4.5 and 4.6.
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In case the alignment check gives satisfactory results, the presence
of an electrically conducting physical surface, in the form of the specimen
surface, offers a possibility to make the relative scale of the specimen
movement as an absolute one. For this purpose, the primary beam
aperture is withdrawn and an electrically isolated needle is connected to
the aperture assembly. The specimen position is set to X, and w is chosen
such that the specimen surface is perpendicular to the primary beam
direction. When electrical contact between the needle and the test
specimen surface is established by moving the needle towards the test
specimen, an independent point is found which can be referred to when
the test specimen is replaced by a real one. All one has to do is to
remember the primary beam aperture position at which the electrical

contact occurred. This procedure has proved to be accurate within
0.005 mm.
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S
Proof of the Principle

5.1 INTRODUCTION

In the previous chapters, the theory for stress determination by means of
Y neutron diffraction, as well as the employed instrument have been
' discussed. In this chapter, the instrument and the calculation methods will
be used for measurements on a specimen that possesses a predictable
stress state. The aim is to prove that neutron diffraction can be used to
measure stresses.

As a specimen we will use a steel bar subjected to four point
bending, the arrangement of which is given in figure 5.1. For our purpose,
four point bending has the following advantages

1. When the applied force on the bending jig is known, the stress
state in the bar can be calculated, provided that no residual
stresses are present in the bar.

2. The stress state in the bar is a function of the depth below the
surface, so that the use of neutrons to measure stresses in the
interior of a material can be clearly demonstrated.

3. The device for stressing a bar of appreciable cross-section has
dimensions that hardly exceed those of the bar itself, so little
difficulties are encountered when placing the assembly on the
specimen table of the neutron diffractometer.

In order to calculate the stress state from lattice plane distances,
1 according to Chapter 3, one needs the so called Diffraction Elastic
| Constants (DEC’s). These can be obtained from literature or from
another experiment (e.g. x-ray diffraction stress measurements).

77
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WX L X@

Fig. 5.1 Principle of four point bending and a photograph showing the bending device used
in the present experiments. The height H of the bar is oriented perpendicular to the plane
of drawing.

Using externally obtained DEC-values, the stress measurements on
a four point bent bar are used as a validation experiment for the neutron
method, as the measured stress should be equal to the stress predicted by
calculation. -

An alternative way to perform the proof of the principle is to
calculate the DEC-values from neutron strain measurements and

5.2 Determination of diffraction elastic constants 79

compare them to DEC-values obtained from literature or from other ex-
periments. The proof of the principle can be considered successful if the
different techniques yield about the same values. In this chapter,
measurements by means of x-ray and neutron diffraction on a steel bar
subjected to pure bending will be compared. It will be shown that DEC-
values obtained by any of the two methods are equal within their
respective experimental error limits [5.1].

5.2 DETERMINATION OF DIFFRACTION ELASTIC CONSTANTS

In this section, first the stress state in a bar subjected to four point
bending will be calculated. In the second part an equation will be derived
that gives the position of a measured diffraction peak as a function of the
stress in the sample volume. This function will be used for the deter-
mination of the DEC-values from neutron diffraction data as a function
of the depth in a bar subjected to four point bending.

5.2.1 Four point bending
A bar subjected to four point elastic bending contains a uniaxial stress
state which is a function of the depth below the surface in the direction

of the applied force. This co-ordinate will be called x. The uniaxial stress
is given by

(5.1)

where
D: thickness of the bar;
Oy Uuniaxial stress at the surface of the bar (i.e atx = 0).

The surface stress oy, is a function of the applied force 2P and the
dimensions of the bar

o, = X 2p (5.2)

BD?

where
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B: breadth of the bar (perpendicular to the plane of drawing in
figure 5.1);
X: lever length of the bending device.

The applied force 2P can be obtained from a calibrated load cell which
is a part of the bending device which will be discussed later.

5.2.2 The working equation for DEC determination

The strain ¢, in a direction defined by y can be expressed in the
orientation of the strain and the local stress, using the sin’y equation for
uniaxial stress. This equation can be derived from the theory presented
in Chapter 3, using 0, = 0, = 0 and 0, = 0. Here we present the result
of that derivation /7

d —d d —d S
8’#’ = M = _Y 0 = _¥ 0 _ Slo' + —ZO'Sinzl/) (53)
d, d, d, 2
where
S, and S,/2: diffraction elastic constants;
Y: angle between the specimen surface normal and the

scattering vector ¢ (g has the same direction as the
bisector of the angle between the primary and the
diffracted beams);

dy lattice spacing in the unstressed situation;

lattice spacing in the stressed situation for planes

oriented according to .

Using Bragg’s law
2dsind = ni (5.4)

where
6. diffraction angle;
A: wavelength of the radiation used;
n: integer that indicates the order of the reflection,

the next working equation can be derived as
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- S S cin2
20 = 360 10_360_251an

’ (5.5)

T cotd w2 cotf + 29,

.In equation 5.5, 26, and 26,, refer to diffraction angles for the specimen
In unstressed and stressed conditions respectively. Differentiation of
equation 5.5 with respect to o at a constant gives

0(20,) _ 360 S, _ 3605, siny (56)
oo 7T cotf T 2 cotf

The left side member of equation 5.6 is obtained from a least squares fit
of a straight line to a 26, vs. o plot (all 26-values in such a plot should
belong to the same y-value). The thus obtained slopes are plotted as a
function of sin%y. From a least squares straight line fit procedure the
DEC values can be obtained (according to equation 5.6, S, is propor-
tional to the 26-intercept and S,/2 is given by the slope of the straight
line).

In this approach, the determination of the diffraction elastic
constants is achieved as a result of two differentiation steps, first to o and
then to sin’y. Mathematically speaking it does not matter which of the
two differentiation steps is made first. From the measurement point of
view, however, it does matter. Suppose that the systematic error in 26
depends on the value of y. In Chapter 2 we have shown that, due to the
combined attenuation and umbrella effects, this could very well be the
case. When the first differentiation step is towards Y, the systematic error
due to the umbrella effect will be filtered out no matter how much is its
magnitude (assuming it to be constant with ¥, which is the case when the

aperture positions are not changed between the different applied stress
levels).

5.3 SPECIMEN MATERIAL

The material to be used for the four point bending test, defines the
feasibility of the proof of the principle experiment. For neutron radiation,
the scattering cross-section as well as the absorption coefficient vary
randomly through the periodic system of the elements.
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The combined effect of diffraction and absorption (attenuation),
causes a neutron beam to lose its intensity as it proceeds through the
material (cf. Chapter 2).

Tron, the main component of low carbon steel, which we have chosen
for the validation experiment combines a reasonably low attenuation with
a good scattering power. Steel is still by far the most used construction
material. Many residual stress problems worth investigating appear in this
material. So it is a pleasant coincidence that steel has the above men-
tioned properties.

The beam attenuation in steel is such that when a neutron beam
proceeds through it, the intensity of the beam reduces by a factor of 2 for
every 7 mm. Consequently, flight paths of about 30 mm are tolerable in
steel specimens. As a result, the depth to which stress measurements can
be performed is limited to about 15 mm. By using a bending bar of 300
mm length, 20 mm breadth and 10 mm thickness we could measure the
strains acting throughout the thickness of the bar.

5.4 BENDING DEVICE

Theoretically, pure bending is a simple deformation mode. This mode can
be achieved by bending a rectangular bar in a four-point bending device.
Pure bending only exists in a bar that is broad, compared to its thickness.
In practice, a bar that is twice as broad as it is thick (i.e. B/D = 2 in
terms of figure 5.1) has ideal dimensions for serving as a specimen in a
pure elastic bending experiment.

In the design of the bending device of figure 5.1 we have paid special
attention to the problem of friction force transfer in the length direction
of the bar. In order to avoid these friction forces, the four supports of the
bending device are cylindrical and mounted in needle bearings. The total
rolling friction of the four bearings is such that the bar can be manually
moved in its length direction even when the force on the bending jig is
in the order of 1000 N.

The force that is exerted on the bending jig can be monitored by a
calibrated load cell that is built in the device. The maximum load is
limited to about 2000 N. This load is sufficient to bend a steel bar with
cross section 10 mm X 20 mm to a surface stress level equal to the yield
stress of the steel used, which is about 300 MPa.
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5.5 MEASURING METHODS

The measuring methods used for both the neutron and X-ray measure-
ments are essentially the same. The only difference is the way in which
the apphed stress o is varied. For x-ray measurements, the (surface-)
stress 1s altered by applying different loads using the ben:iing device; for
neutron measurements o is varied by measuring at different de;;ths

keeping the loading force on the bar co Th :
. nstant. ea
derived from equation 5.1. pplied stress can be

5.5.1 Neutron measurements

A meaguring §ample volume of 1 mm X 1 mm X 20 mm, with its centre
of gr'fmty coinciding with the diffractometer axis was defined by the
cadmium plated apertures of the double slit system that was treated in
Chapter 4. The Fe (110)-peaks (20 = 79°) from this sample volume were
scanned at 19 different x-positions, ranging fromx = 1 tox = 9 mm in
steps of 0.5 mm in the steel bar. The surface stress o, from equation 5.1
was set to 250 MPa, so that the stresses in the bar vary from —250 Ml;a
tUo 1ZSSI(I)l M}:a agross the thickness. Using equation 5.2, the surface stress
O% ST gz; ((i)irneg (lj)gvgzzfms of a calibrated load cell, being an integral part

At each location, diffraction peaks were scanned at 6 different Y-
values, corresponding to sin’y = 0, 0.1, 0.2, 0.8, 0.9 and 1.0. The data
were corrected for the umbrella and attenuation effects as described in

Chaptgr 2. The result of these measurements after data reduction
comprises of 6 sets of 19 20-values.

5.5.2 X-ray measurements

The same bending device that was used for the neutron measurements
dgscnbed above, was mounted on the specimen table of a Siemens w-
d1ff.ractometer. The x-ray measurement site on the specimen surface
which was located in the constant bending moment region was electro:
chemically polished and covered with a layer of silicon powder whose
lattice constant is accurately known. The (220)-reflection of the silicon
powder served to determine the specimen displacement with respect to
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Fig. 5.2 The neutron diffraction peak position 26 as a function of the applied stress o at
sin%y = 1.0. The solid line belongs to a Jeast squares fit of a straight line to the measured
data.

the diffractometer axis. The bending set-up could be moved in the
direction normal to the specimen surface by means of a micrometer screw
in order to correct for the specimen displacement found by the silicon
experiment.

For 13 different applied surface stress levels, ranging from 20 to
260 MPa, scans of the Fe (220) peak were made. This was done at 7
different p-values (corresponding to sinzy = 0 to 0.6) using Fe-Ka
radiation (20 = 145.5°). After each reloading a specimen displacement
correction procedure was performed using the silicon reflection, as
described above. The counting time was chosen such that the peak
intensity was at least 10,000 counts. After background- and LPA-
corrections a parabola is fit to the top 85 % of the measured intensity
data, which yields the peak position.
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Fig. 5.3 The slopes of 6 lines like the one obtained in figure 5.2 as a function of sinyp.

From these data points S, and S,/2 are obtained employing a linear least squares fit (solid
line).
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Fig. 5.4 Measured stress vs. applied stress, using the diffraction elastic constants obtained
in the neutron calibration experiment. The broken line gives the expected results according
to equation 5.1, while the solid line serves as a guide to the eye for the measured data.
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Fig. 5.5 Measured stress vs. applied stress using x-rays. The solid line is the result of a
linear least squares fit to the measured data. The broken line shows the theoretical curve
where the applied stress is equal to the measured stress.

5.6 RESULTS

In this section the results of the measurement of the diffraction elastic
constants of steel, using x-ray and neutron diffraction will be presented.

5.6.1 Neutron measurements

In figure 5.2 an example of a 26, vs. o plot is shown. As measurements
were made at 6 different y-values, 6 plots like in figure 5.2 are obtained.
The slope values of these 6 plots are plotted against corresponding sin%y
values in figure 5.3. From this figure the values for §; and S,/2 were
obtained by a least squares fit of a straight line, yielding

S, = (-1.34 = 0.13) x 107 MPa™!
S/2 = ( 559 =0.16) x 107° MPa™
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Subsequently, the obtained S,/2 was used to calculate the stress from

. 2 . .
Sin“y-curves according to equation 5.5. The results are presented in
figure 5.4.

3.6.2 X-ray measurements

Treatment of the x-ray data using a similar procedure as above resulted
in

S, = (-1.24 £ 0.05) X 10~ MPa"!
S,/2 ( 525 = 0.14) x 10~ MPa~!

Figure 5.5 shows the measured stresses that were obtained by using the
determined S,/2 value.

5.7 DISCUSSION

Theoretical calculations according to the Reuss approximation give the

following values for the diffraction elastic constants for a ferritic steel
5.2][5.3]

S, = =125 x 1075 MPa~"
S,/2 5.81 x 1075 MPa-!

The presented results show that there is no significant difference between
the determined neutron and x-ray elastic constants. Also, the values
calculated according to the Reuss approximation are in reasonable
agreement with the measurements.

From figure 5.5 it can be seen that the determined stress values
deviate systematically from the applied ones. This is due to the presence
of a compressive stress in the surface of the test specimen. Further
confirmation of this was obtained by measurements on the (211)
reflection using filtered Cr-radiation and a Rigaku stress analyzer
employing a parallel beam geometry. It is important to note that this zero
offset has no effect on the results for the x-ray diffraction elastic
constants, because this systematic deviation is eliminated during the
differentiation process, that has been described earlier.
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A somewhat different situation is noticed in case of the neutron
measurement results (figure 5.4). Measurement results from near surface
regions of the bar are in good agreement with the predicted values. In
the central part of the specimen, however, the measured stresses are
systematically slightly higher than the applied ones. This can be partly
explained from the compressive residual stress that is present on the
surface, which should be balanced by the presence of residual tensile
stresses in the interior, in order to maintain a force equilibrium over the
cross section of the bar.

A second explanation can be found in the application of the
correction procedure for the attenuation effect. This procedure has been
applied, using a constant attenuation coefficient throughout the specimen.
This coefficient has been obtained from an entering curve fit using the
functions given in Appendiﬁ 3. When there exists a position dependent
texture in the bar (i.e. a preferred orientation of the crystallites), the
attenuation coefficient is no longer constant, but an unknown function of
v and x. Consequently, for each y and x, a different effective attenuation
coefficient should be applied. This would definitely change the results if
texture is present.

When the lattice spacing is determined at a fixed scattering angle of
90° and by using the wavelength of the neutron beam as the scan
parameter, we automatically get rid of both the attenuation effect and the
umbrella effect. How this can be carried out will be discussed in
Chapter 7.

5.8 CONCLUSION

The question whether it is possible to measure stresses by means of
neutron diffraction, using the facilities and methods present in the
laboratory in Petten has been answered positively through these
experiments. However, the results presented in this chapter make it clear
that a number of improvements have still to be implemented, in order to
avoid the two main sources of systematic errors, viz. the umbrella effect
and the attenuation effect.

"W
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6
Application on Engineering

Cases

6.1 INTRODUCTION

In the preceding chapters it has been shown how stress measurements by
means of neutron diffraction can be performed. It has been shown that
the method gives correct results in case of a uniaxial stress state present
in a bar subjected to pure elastic bending.

In this chapter an attempt to apply to more complex residual stress

measurement problems is made. The following three different cases were
chosen.

1. Determination of the diffraction elastic constants of a ceramic
material: high density alumina (Al,0,).

2. Measurement of the triaxial residual stress state in quenched
cylinders made of pure iron and martensitic steel as a function
of the depth below the surface.

3. Measurement of the biaxial stress state in a cold rolled iron
plate as a function of the depth below the surface.

The measurements on the ceramic material were carried out in order to
show that neutron diffraction measurements are not limited to metals, but
can be applied to any crystalline material. The measurements are closely
related to the proof of the principle experiment performed, using an
elastically bent bar, which has been discussed in Chapter 5. The choice
of the ceramic is related to a research program at the Petten establish-
ment concerning the creep behaviour of ceramics.

As a first approximation, neither the ceramic bar nor the quenched
cylinders will possess a texture as a result of the way they are manufac-
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tured. However, the rolled iron plate is expected to possess a depth
dependent texture, which is characteristic for rolled iron.

Finite element calculations have been carried out on the quenching
and rolling processes. In order to check these calculations as well as the
neutron stress measurements, X-ray stress measurements have been per-
formed on the quenched cylinders and on the rolled plate. The x-ray
stress measurements as a function of depth were carried out using a
successive layer removal technique, based on electrochemical polishing.

6.2 DIFFRACTION ELASTIC CONSTANTS OF ALUMINA

Alumina is an inorganic <Compound that shows a high elastic anisotropy.
Consequently, the elastic behaviour of a specific crystallographic lattice
plane (hkl) differs from the macroscopic elastic behaviour. As we have
shown in Chapter 5, the different elastic behaviour for different lattice
planes can be described by defining (hkl)-dependent elastic constants,
which are called diffraction elastic constants (DEC’s). In this inves-
tigation, we have determined the DEC-values for the (202)-reflection of
alumina. This alumina reflection is attractive for our measurements for
two reasons

1. It is the strongest reflection from the alumina structure.
The peak position angle for the wavelength (A = 0.257 nm), that
is employed in our diffractometer is 26 = 76°, which is reason-
ably close to the ideal angle of 90°.

6.2.1 Background of the problem
The use of ceramic components at high temperatures is limited by the
tendency of these materials to creep. Creep might eventually lead to
failure of the component by creep rupture. Knowledge of the creep
behaviour of ceramic materials is therefore of importance in determining
the lifetime at high temperatures.

Creep tests on ceramics are often performed using four point
bending tests at elevated temperatures. Compared to tensile tests there
are major advantages in this testing procedure which is, however, carried
out at the expense of a more complicated analytical evaluation. By
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measuring the deflection of the bending bar during creep tests, the
parameters of appropriate creep laws can Dbe deterrr’xined
[6.1][6.2]. The stress distribution and the residual stresses after
unloading can be calculated using a method developed by Fett et.al. [6.1]
In the future, one may like to determine this residual stress distributior;
by means of neutron diffraction in order to check the stress prediction
method which is related to the choice of the creep laws to be applied
Theref(?re, as a trial experiment, the DEC-values of alumina have beeli
determined using neutron diffraction on a four point bending bar that is

large compared to a creep test specimen. The experiment serves two
major purposes.

1. The neutron scattering- and attenuation behaviour of alumina
can be studied using a fairly large sample, so that a prediction
can be made on how long measurements on very small creep
test specimens will take. '

2.  When future stress measurements will be carried out on creep

test specimens, the determined DEC-values can be directly
applied.

6.2.2 Specific theory

The calibration experiment was carried out on an alumina bar subjected
to .f01.1r point bending. Four point bending leads to a depth dependent
uniaxial stress profile as was explained in Chapter 5 (equation 5.1). In
Chapter 5, also the relationship between the strain in a direction ¢ and
the applied stress was given for a uniaxial stress situation.

I.n tf}e experiment described here, the stress at the measurement
l(.)CélthIl is altered by applying different loads using the bending jig (cf.
flgure 5.1), which is contrary to the situation for the steel bar described
in Chapter 5, where the applied stress level was chosen by performing
measurements at different depths. The advantage of measuring at a fixed
depth, (not too far) below the surface is that the average beam path
through the specimen (and therefore the attenuation) is kept as low as

possible, thus reducing the total measuring time needed for the ex-
periment.
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6.2.3 Specimen preparation

A dense alumina bar was manufactured by cold isostatic pressing at 200
MPa, using Martins Werke C5400 MS Powder (99,7% Al,O,). This was
carried out at the National Ceramics Workshop in Petten under the
supervision of P. Bach. A bar of 35 mm X 35 mm X 450 mm was pre-
sintered and subsequently sectioned into two bars of 30 mm X 15 mm X
400 mm size. After sintering at 1600°C for 1 hour the bars were
machined to their final dimensions of 10 mm X 12 mm X 320 mm. The
residual stresses due to the machining process are expected to be
confined in a near surface region of less than 20 um, so that they will not
influence the neutron stress measurements. The relative density of the
final specimen was 98%.

/

6.2.4 Experimental details

The powder diffractometer at HBS at the High Flux Reactor in Petten
was modified according to the methods described in Chapter 4. The
modifications involved a reduction of the sample volume to about
1 mm X 1 mm X 12 mm by means of the developed double slit system.
On the specimen translation table the bending device that was treated in
Chapter 5 was mounted. The force 2P applied on the ceramic bar was
monitored by means of a force transducer. In the course of the ex-
periment, 2P was varied from 100 N to 700 N in 7 steps. Taking into
account the dimensions of the bar and the bending device and the fact
that the centre of gravity of the sample volume is situated 1.0 mm below
the bar surface, it can be calculated from equations 5.1 and 5.2 that the
corresponding stress changes are from 15 MPa to 105 MPa.

The positioning of the specimen before the first measurement is
carried out using the entering curve method described in Chapter 4. The
position where the specimen surface is exactly covering the diffractometer
axis is transferred to the position of a needle that is attached to the
primary slit assembly. For this purpose an electrical contact was
established between the needle and a reference electrode, which is rigidly
connected to the bent specimen.

After each loading, the specimen table position at which the
electrical contact just touches the reference electrode is the home
position for the set of measurements at that particular load. The position
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is found by means of an ohmmeter. This procedure proves to be accurate
within 0.02 mm.

' Using this set-up, alumina (202)-diffraction peaks were registered at
4 d}fferent values of y (0° 20°, 65°, and 90°). The adjustable slit system
defines the sample volume to about 1 mm X 1 mm X 12 mm, such that
for all y-values the sample volume lies entirely inside the specimen.

6.2.5 Results

The entering curve that served as the basis for the specimen positioning
and the determination of the attenuation coefficient is given in figure 6.1.
The fit results for the entering curve function of Appendix 3, are
summarized in Table 6.1. All the specimen positioning procedures were
based on this entering curve, so the uncertainty in the specimen position
(viz. 0.05 mm being the square root of the quadratic sum of the statistical
error from the fit and the electrical contact positioning error) is the same
for all applied stress values. )

The diffraction peak positions were obtained from a Gaussian fit to
the.r.neasured intensity profiles. Subsequently, the slopes of the peak
position vs. applied stress plots (not given here) were calculated using a
least squares straight line fit procedure. Just like in the previous chapter
this fit should also be linear. This result is presented in figure 6.2.

From the slope and vertical axis intercept of figure 6.2, the elastic
constants S, and S,/2 can be derived using equation 5.6. The determined
values of S, and S,/2 are given in Table 6.2. From the values of S, and

Sz/? so determined, the apparent values of Youngs modulus and Poisons
ratio can be calculated using the relationships

Ry
S ==Y d 22 _ 14 6.1
=-F aa Zel (6.1)

The results of this calculation are also given in Table 6.2.

6.2.6 Discussion

In Table 6.2 the macroscopic isotropic values for E and v of alumina are
given. From Table 6.2 it is evident that alumina is strongly anisotropic in
its elastic behaviour. Especially the difference between the macroscopic
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Integrated intensity (arbitrary units)
. , . .

46.5 47.0

47.5 48.0 485 49.0

Relative sample position (mm)

Fig. 6.1 The entering curve for the measurements on the alumina bar. The solid curve is
the result of a fitting procedure using the functions described in Appendix 3 (cf. Table 6.1).

elastic constant v and the measured value for v is striking. This illustrates

the need for calibrated constants when performing str

on such materials.

ess measurements

The ultimate purpose for which the present measurements serve as

a trial experiment, was to see W
residual stress state as a function o
5 mm X 5 mm, which is the size of the s

Relevant parameters of the entering curve fi

in Appendix 3.

Table 6.1

hether it is possible to measure the
f depth in a bar as small as 60 mm X

pecimen used in the above

t according to the equations given

parameter value error unit
Relative surface position 47.64 0.04 mm
Slit openings 1.15 0.10 mm
Attenuation coefficient 0.02 0.03 mm ™!
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Table 6.2
Final result for the diffraction elastic constants of alumina
elastic constant value error unit
this work
S, —0.24 10°¢ 0.11 10°° MPa™!
S,2 4.38 1076 0.17 107° MPa™!
v 0.06 0.03 -
E 241.4 7.1 GPa
isotropic values
v 0.25 - -
E 360 - GPa
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mentioned creep tests. In a specimen that small, the sample volume must
be of the order of 0.5 mm X 0.5 mm X 5 mm for a longitudinal stress
measurement (up to 0.5 mm X 0.5 mm X 20 mm for a transverse stress
measurement) in order to obtain a spatial resolution that makes sense in
comparison with the outer dimensions of the specimen. The present
sample volume is about 10 times larger for longitudinal measurements.
Hence for measurements on creep specimens, the measurement duration
should be roughly 10 times longer for the longitudinal direction in order
to obtain the same counting statistics (i.e. provided that the background
level can be kept low enough as was explained in Chapter 2). In the
present experiments, the measurement time was 6 hours per peak, so for
measurements on a creep sample in longitudinal direction, roughly 60
hours per peak would benecessary. This large measurement time could
be reduced by employing a vertical stack of — say five — creep specimens
with their edges placed adjacent to each other (with overall size 60 mm
x 25 mm X 5 mm). This would enable a five times higher sample volume
for longitudinal measurements. In such a case each unit in the stack must
have been subjected to the same creep test conditions, which is feasible.
Using this type of stacked samples could reduce the measurement time
by a factor which is equal to the number of samples employed.

6.3 FINITE ELEMENT CALCULATIONS

Before continuing with the presentation of the measurements on the
quenched cylinders and the cold rolled plate, a few remarks on the
method by which the stress state in those specimens can be predicted will
be given.

The quenching and rolling process are simulated by means of a
calculation method that is called the finite element method. This method
can be characterized as a numerical way to solve a (complex) set of
(partial) differential equations. These equations result from physical
conservation laws (conservation of mass, momentum, €nergy etc.). In
addition to these general laws, a mathematical description of the material
— the constitutional equations — are required. The description of the
materials used in the present study is based on a continuum theory for
large elastic-plastic deformations. Thermal effects like expansion and
phase transformations are also included.
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A detailed description of the method is beyond the scope of this
thesis, however, it can be found in [6.3]. The used simulation
program is called DIEKA. It has been developed at Twente University.
The simulations on the quenched cylinders were carried out at Twente

University [6.4], while the simulations on the cold rolled plate were
performed at Hoogovens, IJmuiden [6.5].

6.4 QUENCHED IRON AND STEEL CYLINDERS

When a hot material in the form of a cylinder is quenched in oil or water,
a tri-axial residual stress state develops in the material as a consequence
gf non-uniform plastic deformation [6.6]. The developed stress state
is a function of the radius of the cylinder. The exact form will depend on
the temperature, the cooling rate and the flow properties of the material
of the cylinder. The development of the residual stress state is due to the
non-uniform cooling of the specimen from surface to interior, which
induces non-uniform plastic deformation.

A second cause for the development of residual stress is due to a
phase transformation at relatively lower temperatures e.g. the forming of
martensite during quenching of high carbon steel.

6.4.1 Choice of specimens and heat treatments
II? order to obtain a reasonable spatial resolution compared to the
diameter of the cylinder we chose cylinders with a diameter of 15 mm.

The length was chosen to be 100 mm which is in practice infinitely long
compared to the diameter.

Table 6.3

Chemical composition of the U.L.C. steel and the high carbon steel that was used in the
present experiments.

Material C Si Mn Cr v Al
U.L.C. 0.002 0.012 0.195 0.016 - 0.058
90MnV8 0.9 0.25 2.0 0.35 0.10 -
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Two materials have been used: Ultra Low Carbon (U.L.C.) steel,
supplied by Hoogovens and an oil hardening carbon steel (90MnV8)
which was obtained with the help of the Foundation for Advanced Metals
Science in Enschede. In Table 6.3 the chemical compositions of both
steels are given.

Two different heat treatments were given to both steels, with the
purpose to create a distinct residual stress state. The first heat treatment
involves holding for 30 minutes at 820°C and then quenching in oil. The
second heat treatment employed a holding time of 30 minutes at 820°C
followed by a quenching in water. However, only the U.L.C. specimen
could be water quenched successfully, as the 90MnV38 specimen showed
cracks after quenching in water due to the high severity of quench.

A third specimen, made of U.L.C. was given a stress relief treatment
for 4 hours at 640°C followed by a slow cooling in the oven, in order to
serve as a specimen for the determination of the stress free lattice
parameter of U.L.C.

6.4.2 Neutron stress measurements

In order to solve the complete tri-axial stress state in the interior of a
cylinder, an assumption will be made that the principal axes of the stress
tensor are parallel to the main axes of the cylinder. As during the
quenching process the heat flow field is uniform and symmetrical, this is
a reasonable assumption.

As was already pointed out in Chapter 3, it is impossible to solve for
the three unknown principal stresses g,, o, and o,, without knowing the
stress free lattice distance d, for the (110)-planes. For the U.L.C
specimens d, was obtained from the measurements on the stress relieved
specimen. In the martensitic specimen, however, d, was not found to be
a constant as a function of the radius. This perhaps is related to a
possible inhomogeneity in the microstructure. Due to differences in
cooling rates between surface and interior, the amount of transformed
martensite can vary from 100 % at the surface to lower percentages at
the interior. This phenomenon will be illustrated by using the x-ray
measurements that have been performed on the martensitic specimen.

In x-ray measurements using a successive layer removal technique,
a knowledge of d, is not necessary. This is due to the fact that x-ray
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measurements are confined to the surfaces where the stress state is
always bi-axial (cf. Chapter 3).

A solution for the stress free lattice constant problem in martensitic
steel can thus never be found without destroying the entire specimen and
performing x-ray measurements as a function of depth. These x-ray
results must be brought to the same absolute scale as the neutron
measurements, which poses an enormous experimental problem. For this
reason, as far as the neutron depth stress measurements are concerned,
we have restricted ourselves to the U.L.C. specimens.

The grain size of the U.L.C. specimens was in the order of 0.1 mm.
In order to obtain a better crystal diffraction statistics (i.e. to have more
grains in the diffracting position during a measurement), the specimens
were centrally mounted on a rotation device. The combined rotation
device and specimen was mounted on the diffractometer specimen table.
The alignment of the cylinders in the diffraction geometry was achieved
using the entering curves obtained with the standard powder specimen
and the electrical contact method described in Chapter 4. The radius co-
ordinates at which the stress measurements were performed arer = 0, 2,
4, 6 mm.

In order to solve the complete stress state, two sets of measurements
were performed in two diffraction measurement configurations.

1. The cylinder was placed with its axis vertical. Neutron beam
apertures limiting the beam cross sections to 1 mm X 20 mm
for both the primary and secondary beams were placed. In this
way the total sample volume is about 20 mm?®. In this con-
figuration, the scattering vector q is always perpendicular to the
cylinder axis. In this arrangement, 4 different y-values (i.e. 0°,
35.67°, 54.33° and 90°) were employed per measurement in
tangential direction.

2. The cylinder axis was placed horizontally, employing neutron
beam apertures limiting the beam size to 2 mm X 2 mm. The
sample volume is now about 8 mm?>. In this configuration, the
scattering vector is always perpendicular to the tangential
direction of the cylinder. In this arrangement, 3 different y-

values (i.e. 18.43° 71.57° and 90°) were employed per measure-
ment in longitudinal direction.
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The solution of the stress state has been according to the theory of
Chapter 3. If we use the following relations for the principle stresses

oy =0,
Oy = 0y (6.2)
Oy =0,
the orientation matrix K takes the following shape
1 1 o 0 o0 00
1 0666 0333 0 0471 0 O
1 0333 0666 0 0471 0 O
K=|1 0 1 0 0 00 (6.3)
1 GfQ 0 01 0 030
1 01 0 09 0 030
1 0 0 1 0 00

6.4.3 X-ray stress measurements

The x-ray measurements were performed using a Rigaku stress analyzer.
The stress measurements consist of two series of sin?y-measurements, one
in the longitudinal direction of the cylinder and the second ip the
tangential direction. In order to obtain the stress values as a function of
the radius (depth), a successive layer removal technique based on
electrochemical polishing was applied. Due to the removal of stres§ed
layers, the stress state of the cylinder alters. Therefore a cor.rectlon
procedure as proposed by Moore and Evans [6.7] has been applied.

As the x-ray measurement of stresses is confined to the surface, the
stress field under investigation is a bi-axial one. This offers the possibility
to deduce the stress free lattice parameter d,,, from a set of perpendicular
sin*y-measurements. In terms of the theory described in Chapter 3, this
corresponds to a stress constraint of the form: o,; (= 0,) = 0, which
affords us to have one extra unknown in the set of equations to be
solved, which is d,.
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6.4.4 Final results

The obtained neutron diffraction profiles were treated according to the
methods outlined in Chapter 2. This means that both the umbrella effect
and the attenuation effect have been taken into account. This reduces the
information contained in one diffraction profile to one single d-value. All
d-values measured at a certain radius are treated according to the
procedure described in Chapter 3, yielding the values for o,, 0, and o,
The x-ray diffraction profiles are treated according to the standard
procedure offered by the Rigaku instrument which involves background
substraction, LPA correction and fitting of a parabola to the top 85 % of
the diffraction intensity profile. The stress calculation that follows is
performed using the theory explained in Chapter 3 so that in one cal-
culation oy, g,, and d,, are obtained. The diffraction elastic constants used
in these calculations are from the experiments presented in Chapter 5.
In the figures 6.3, 6.4 and 6.5 the combined neutron, x-ray and finite
element analysis results for both U.L.C. specimens are presented. In
figure 6.6 the results of the determination of the strain free lattice
distance are presented for all the specimens including the martensitic one.

6.4.5 Discussion

The results of stress determination by different techniques for the U.L.C.
specimens shown in figures 6.3, 6.4 and 6.5 indicate large differences. It
is difficult to offer a straightforward explanation as to why the differences
are so large. One of the reasons may be related to the difference in
spatial resolution in radial direction for both applied measurement
techniques viz. x-ray and neutron diffraction. For neutron diffraction, the
depth over which the averaging takes place is in the order of 1 to 2
millimetres, while in the x-ray case this averaging depth is in the order of
about 10 um. This may explain numerical differences in the measurement
results. However, it should not vastly influence the trends indicated by
both techniques.

A second explanation may be due to the fact that the U.L.C. steel
tested was a very coarse grained material. Normally this phenomenon is
known to give an enormous scatter in sin%p-curves, because only very few
grains contribute to the diffracted intensity. We have tried to compensate
for this by rotating the specimen about its own axis, thus bringing several
crystallites into diffracting conditions. This apparently has not been
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Fig. 6.3 Radial residual stresses o, distribution determined in U.L.C..steel cylindrical
specimens. The left graph refers to the oil quenched specimen and the right graph to the
water quenched specimen. The open and dark circles represent the x-ray-_a.nd neutron
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Fig. 6.4 Circumferential residual stresses g, distribution de'terr.nined in UL.C. steel
cylindrical specimens. Other details are similar as those given in figure 6.3.
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Fig. 6.5 Axial residual stresses g, distribution determined in U.L.C, steel. Other details are
similar as those given in figure 6.3.

adequate. We must remark, however, that this has not in the least
induced any scatter in the stress free lattice parameter d, as presented in
the two bottom curves of figure 6.6 which may be understood from the
fact that these dg-values are results from many lattice parameter deter-
minations, so that a better average has been obtained.

The finite element predictions for the stress state in the quenched
cylinders indicate gradual changes. Unfortunately this could not be
verified due to a poor agreement with both the X-ray and the neutron
measurements.

In spite of the deviations, one can sti]] S€€ some agreements to
physical expectations. The oil quenched cylinders should contain residual
stresses of lower magnitude as compared to the water quenched cylinders,
since the severity of quench and the consequent plastic deformation are
higher with water quenching. The results agree with this. (compare left
sides of figures 6.3, 6.4 and 6.5 to the corresponding right sides). It is also
worth mentioning that with neutron measurement at a radius of 4 mm
many of the measurement resuits show a consistent but significant

deviation as compared to results obtained at other radii. Though such
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Fig. 6.6 The stress free lattice distance determined by means of x-ray diffraction in
quenched material. The top curve ar¢ the values for 90MnV8. The curves below are the
values for U.L.C. (open symbols: oil quenched, closed symbols: water quenched). The
drawn curves serve as a guide to the eye.

deviations are not evident from the x-ray results, it is difficult to make
any qualifying statements as the x-ray measurements were not continued
to greater depth. Also, the interval at which the neutron measurement's
were performed is somewhat large (2 mm) which makes the analysis
difficult. The incomplete x-ray measurements and the neutron measure-
ments at large intervals were due to experimental difficulties and the
large grain size of the material (and the consequent need to rotate the
specimen). '

From figure 6.6 it is clear that the martensitic steel in the ’as quen-
ched’ state cannot be characterized by one stress free lattice parameter,
due to the inhomogeneity in the microstructure. The as calculated va?ue
for d, gradually changes with the radius of the measurement site,
resulting from a decrease in martensite percentage with depth from the
surface. An interesting observation, however, is the sudden decrease for
the stress free lattice parameter at the surface of the cylinder
(ie. at r = 7.5 mm). This may be resulting from a depletion of carbpn
in the near surface region, due to oxidation which can take place during
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the heat treatment (this was indeed confirmed by a much lower value for
the full width at half maximum of the x-ray profiles at the surface as
compared to the interior). A lower carbon content will lead to a smaller
d,, because of the interstitial occupancy of the solute atom viz. carbon.
From figure 6.6 it can be seen that the dj-value at the surface of the
hardened specimen lies between the values at some depth (martensite)
and the value for U.L.C steel (ferrite) that hardly contains any carbon.
From this we may conclude that only a partial decarburization has taken
place at the surface, in this discussion we neglect the influence of the
other alloying elements of the steel like chromium, manganese and nickel,
as they occupy substitutional positions in the crystal lattice.

As was pointed out before, the martensite percentage of the
90MnV8 cylinder is expected to decrease with depth, because of the
lower cooling rates at the interior which experiences a less severe quench.
Due to this, the diffraction from the sample is not only due to the
martensite but also due to the ferrite and bainite. The resulting diffrac-
tion profiles will all overlap as the difference in lattice spacings are small
and the structure is almost the same (b.c.c. or b.c.t). Diffraction from all
these structures will contribute to the breadth of the measured profile.
The result of this is an apparent decrease in d, which has to be accounted
for in tri-axial stress analysis. Results of figure 6.6 support this. Some
influence of retained austenite can also be expected, which will not be
elaborated here.

After these measurements on the martensitic specimen we concluded
that it had no use analyzing the neutron results that had been obtained
from the martensitic specimen unless it was subjected to the layer
removal procedure and surface measurements are done by means of
neutrons (which is hardly possible with neutrons).

Stress free lattice parameter determination may be a good means to
establish, whether or not the individual stress measurements have been
performed correctly. In a homogeneous material d, should be the same
throughout a specimen. Obtaining this result is necessary, but need not
necessarily mean that the stress measurements can be successful. As can
be seen from figure 6.6, this stress free lattice parameter condition has
been fulfilled for the U.L.C. specimens. However, the stress results are
not conclusive.
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6.5 COLD ROLLED U.L.C. PLATE

The cold rolling process is characterized by complex and non-uniform
plastic deformation. Consequently, residual stresses develop in the
material due to cold rolling [6.8][6.9]. Both the elastic and plastic
behaviour of iron are to some extent anisotropic. Therefore, besides a
residual stress state, a cold rolled piece of iron will also posses a certain
texture. Texture is defined as the existence of preferred orientations in a
polycrystalline material. During rolling, the plastic deformation starts at
the surface and proceeds inward. The plastic deformation is caused by
what is called as slip or glide of dislocations in certain crystallographic
directions. Due to the constraints imposed by the rolls the material has
to flow in a particular direction, where there is a freedom of flow (rolling
direction). This leads to-the development of texture.

As the elastic behaviour of iron is anisotropic, the presence of
texture imposes difficulties on stress measurements by means of
diffraction techniques. The macroscopic behaviour of a textured material
will be somewhere between a perfectly anisotropic single crystal and a
perfectly isotropic randomly oriented polycrystalline material. Theoretic-
ians of various background have been working on this phenomenon since
a long time now [6.10][6.11] and it is not on this place that we
would pretend to add something new to this enormous problem. It can
be seen, however, that for materials, which are interesting from a neutron
diffraction stress measurement point of view, the texture will always play
a minor role. To that end it should be realised that a strong texture
usually develops after a cold forming process inducing several hundreds
of percentage of plastic deformation. This holds e.g. for cold rolling thin
sheet and wire drawing to small sizes. Cold rolling of materials, to a final
thickness in the order of a centimetre is only applicable for moderate
reductions and consequently lead to a not very strong texture. In fact
those materials worth investigating with neutrons have to have certain
minimum dimensions. The resulting not too strong texture may not have
any influence at all on the stress measurements.

The formation of dislocations and their glide mechanisms are both
responsible for the development of texture as well as residual stresses.
The formation of dislocations, however, also has a separate effect which
is the strengthening of the cold worked product, caused by the earlier
formed dislocations obstructing the movement of newly formed ones. So
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during jthe cold rolling process, as a first approximation, we expect a work
hardening proportional to the amount of plastic deformation.

Work hardening is known to continuously disappear during the hot
working of materials. The processes involved are dynamic recovery and
recrystallis?tion which takes place at higher temperatures as comparr};:d to
the dynamic recovery. The temperatures at which both dynamic recovery
and r.ecrystallisation may take place, decrease with increasing amounts of
pl.astlc defprmation and dislocation density. During cold working (rolling
wire drawing etc.), an appreciable amount of heat is dissipated due to the’
Internal friction within the material. This causes the temperature to rise
as the heat can not be extracted from the material immediately. It was
shom bx Aernoudt [6.12] and Denis etal [6.13] that durin
wire 'drawmg at room temperature, the combined effect of high disg-
location density and temperature elevation can cause both dynamic
recovery and recrystallisation in the drawn material. In our case, the
dimensions of the plate are such that the ratio of heat production’ and
heat conduction to the rolls is high, so a substantial raise of the tempera-
ture during rolling may be expected.

' .During the cold rolling, the dislocation density at the surface region
1s‘h1gher than at the interior of the plate. But the surface temperature
will pe somewhat lower than that at some depth below, due to the fast
cooling at the surface. So if dynamic recovery and/or recrystallisation take
place, their effect will be maximum at a region near the surface where
the tempejrature effect as well as the deformation effect are the highest
If. d.ynamlc recovery or recrystallisation takes place, they can have a;
d¥st1nct.effect on the measured stress state as well as on the breadth of
d1ffractlop peaks obtained as a function of the depth below the surface.

' The influence on the texture of rolled material will be different for
eTther Qynamic recovery and recrystallisation. While the dynamic recovery
gives rise to a polygonalisation in the individual crystallites only, the
recrystgllisation will actually form completely new crystallites due’to a
ITucl.eatlon and growth process. The new crystallites formed by recrystal-
lisation may possess a texture that is different from the non-recrystallised
material.

In‘ this section, measurements of the residual stress state of a cold
rolled iron plate (U.L.C.) by means of x-ray and neutron diffraction will
be presented along with texture measurements as a function of the depth.
The measurements will be compared to finite element calculations that
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have been performed at Hoogovens [6.5]. It will be shown from the
results, that dynamic recovery as well as recrystallisation do play a role.

6.5.1 Specimen preparation

The cold rolled specimen was produced at Hoogovens with the help of
F. van Eck. The starting material was a U.L.C. steel cube of 100 mm
(volume 1 dm®), possessing a chemical composition according to Table
6.3. The steel was hot rolled at approximately 640°C to a final thickness
of 20 mm. After cooling and surface cleaning, the remaining piece was
cold rolled to a final thickness of 10 mm. The reduction scheme is
presented in Table 6.4. It has to be mentioned here that the time
between successive rolling passes was short (several seconds) compared

/

Table 6.4

Sequence for the cold rolling process on
U.L.C. steel. The diameter of the applied
rolls was 228.6 mm.

Pass number Thickness
after pass

(mm)

0 19.8

1 19.5

2 18.9

3 18.4

4 17.9

5 17.1

6 16.5

7 16.0

8 15.3

9 14.7

10 13.8

11 13.1

12 12.3

13 11.6

14 11.0

15 10.3

16 9.9
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to jche time needed for a complete cooling down to room temperature
which would be in the order of 20 to 30 minutes. ,

The final plate, having a length of about 1 metre was used to
produce several specimens. A piece of 250 mm length and breadth 110
mm served as the stress measurement specimen. The remaining part has
been used for making the samples for the texture measurements.

Thc? preparation of samples for texture measurements is very time
consuming. It was carried out in several steps using spark erosion. From
the plate, 1 mm thick slices were cut in planes parallel to the rolling
plane. In this way slices were obtained from different depths below the
surface. (vizz. 0-1 mm; 1-2 mm etc.). These slices, with dimensions of
about 100 mm X 20 mmX 1 mm were subsequently cut to strips of 100
mm X 9 mm X 1 mm, which were subsequently cut to squares of 9 mm
X 9 mm X 1 mm. During the spark erosion process steps, care was taken
to indicate the rolling direction and depth origin of every slice. Finally
th:c }ittle squares belonging to the same depth below the surface of the,
original specimen were stacked together forming small cubes making sure
that their individual rolling direction orientations were maintained
parallel. In this way 10 specimens were prepared, so the texture as a

function of the depth below the surface can be measured with a depth
resolution of 1 mm.

6.5.2 Neutron stress measurements

If we assume the orientation of the principal axis system to be parallel to
the rolling axis system of rolled plate, the stress state can be proved to be
a biaxial one. This can be understood from the fundamental laws of
mechanics in the following way. As the shear stresses are all equal to zero
in the specimen axis system (i.e. the principal axis system), there is no
shear stress gradient available in the direction perpendicular to the plate.
The stress perpendicular to the plate, 0,, is proportional to the shear
stress gradient, so without a gradient o, can never reach any value other
than zero, as at the free surface o, = 0. This reasoning applies for any
flat plate for which one can be sure that the principal axes follow the
main dimensions of the plate (when the principal axis system rotates as
a function of depth, this reasoning will not apply).

Determining the biaxial stress state was performed through two series
of mutually perpendicular sin“y measurements. During the first set, the
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rolling direction is kept parallel to the diffractometer axis, while during
the other, the rolling direction is kept perpendicular to the diffractometer
axis such that the diffractometer axis is parallel to the plane surface of
the plate. The positioning of the specimen in the diffractometer geometry
is according to the standard procedure described in Chapter 4.

As the thickness of the rolled plate is 10 mm and the rolling process
must be expected to produce a symmetrical residual stress pattern, we
have only performed measurements up to half the thickness of the plate.
The depths at which measurements were performed range from 0.5 to 5
mm in steps of 0.5 mm. The y-values at which the diffraction peaks were
scanned are in both cases: 0°, 30°, 60° and 90°. The scan results were used
as input for the data reduction procedures described in the Chapters 2
and 3, resulting in the solution of the longitudinal stress o, the stress
transverse to the rollingdirection o, and the stress free lattice parameter
dy. If the following relations are chosen with respect to the theory
described in Chapter 3
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6.5.3 Neutron texture measurements

At another beam port of the reactor at Petten, a single crystal diffrac-
tometer is located. This instrument can be operated as a texture gonio-
meter as well.

The principle of a texture measurement is simple, the specimen is
rotated around two axes in a stepwise manner. One axis is perpendicular
to the surface of the specimen (the p-axis), the other inclines the @-axis
from a fully vertical to a fully horizontal position in the diffraction
geometry (the y-axis). For each position in this two dimensional orien-
tation space, the intensity of one of the available crystallographic
reflections is measured by counting, during the time needed for a fixed
number of neutrons to pass by.

The representation of the measurement results is in the form of pole
figures, the principle of which can be found in any textbook on texture
analysis [6.14]. For each sample, three pole figures have been measured
(viz. the 110, 200, and 211 pole figures), in order to be able to obtain the
orientation distribution function (ODF) according to the method of
Bunge [6.14].

A more traditional way of determining texture pole figures is X-ray
diffraction. The advantage of the use neutron diffraction for texture
analysis over x-ray diffraction is twofold

1.

The full p-x space can be scanned without the occurrence of a

0y = 0
Op = 0, (6:4)
0, =0
the K matrix reduces to
1 0 0 1 0 0 0
1 025 0 075 0 0433 0
1075 0 025 0 0433 0
0 0
K = 1 1 0 0 O (6.5)
1 0 0 1 0 O 0
1 0 025 075 0 0 0433
1 0 075 025 0 O 0.433
1 0 1 0 0 O 0

grazing angle geometry that is encountered in x-ray diffraction
for x >= 75°. This is especially advantageous when calculating
ODF’s from measured pole figures, as no assumptions about the
form of the pole figure in missing areas (=75° < y < 90°) have
to be made.

2. As the irradiated sample volume is larger during neutron
measurements, a better volume average can be obtained than
with x-ray diffraction. However, this is not an advantage in the

case of the determination of the texture of a thin layer on a
substrate.

6.5.4 X-ray stress measurements

Using the Rigaku system, standard sin*y measurements have been per-
formed as a function of the depth in the rolled plate. After successive




o, (MPa)

114 Application on engineering cases

400

200

-200

-400

|
o, (MPa)

2

Measurement depth z (mm)

200

100

-100

-200

Measurement depth z (mm)

Fig. 6.7 Stress determination results for the stress in rolling direction o, (left graph) and
the stress in transverse direction o, (right graph). The open symbols represent x-ray
measurements, the closed symbols represent neutron measurements. The drawn lines are
the result of finite element calculations.
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Fig. 6.8 Values for the stress free lattice parameter d, as found by neutron and x-ray
measurements. The open symbols represent x-ray measurements, the closed symbqls are
neutron values. The x-ray results, which have been obtained using the (211)-reflection of
iron have been scaled to (110)-values. The drawn lines serve as guides to the eye.
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Fig. 6.9 The integral breadth of the x-ray diffraction peaks at ¢ = 0°, obtained on a rolled

U.L.C. cold rolled strip as a function of the depth below the surface. The solid curve
serves as a guide to the eye.

removal of material by electrochemical polishing, the stress measurements
were performed in two mutually perpendicular directions. On the surface
at each stage in this way, the stresses 0, and o, and the stress free lattice
parameter d, as a function of depth were obtained. The stress results
have been corrected for the relaxation due to the removal of material
during electrochemical polishing, according to Moore and Evans [6.7].

6.5.5 Results
The data reduction methods for the diffraction results are similar to the
ones described during the treatment of the quenched cylinders.

In figure 6.7 the results for the longitudinal stress o, and the
transverse stress o, as a function of the depth of measurement are given.
In figure 6.8, the x-ray and neutron results for the stress free lattice
distance, which are based on an assumption of a bi-axial stress state are
given (0, = 0). In figure 6.9 the integral breadths of the x-ray diffraction
peaks at y = 0° in the transverse measurements are given.




116 Application on engineering cases

rolling direction

transverse direction

Levels: 0.78 096 1.14 132 1.50

Fig. 6.10 (110)-Pole figures of the samples taken from the cold rolled U.L.C. strip at
different depths below the surface (cf. figure 6.11).
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Fig. 6.11 (110)-pole figures of the samples taken from the cold rolled U.L.C. plate at
different depth below the surface (cf. figure 6.10).
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The results of the texture measurements are given in figure 6.10 and
6.11 in the form of ten (110)-pole diagrams each representing the texture
at a specific depth interval. The figures indicate intensity contour lines,
which represent different levels of diffracted intensity (or in other words
the sharpness of the texture)

6.5.6 Discussion

From figure 6.8 it is clear that the obtained value of the stress free lattice
parameter d, does not change significantly with the depth. For the X-ray
measurement this can be expected because of the surface measurement
character of this method. With the neutron measurements d,, as obtained
from an analysis of the measurement results on the basis of a bi-axial
stress state, does not chdnge with depth. This supports the correctness of
the assumption that the stress state in the rolled plate is indeed bi-axial.

In order to be able to compare the dj-values as obtained by X-rays
and neutrons, the x-ray values in figure 6.8, which have been obtained
from the (211) reflection of iron have been recalculated to the (110)-
values. The difference between the mean dj-value of both methods must
be attributed to the use of different instruments for both methods and a
possible zero error with the x-ray system. For stress measurements, the
systematic error of the diffraction peak is of little importance as long as
it is consistent for all the peaks involved in a stress measurement.

The stress measurement results presented in figure 6.7 show a rea-
sonable agreement between the x-ray and neutron measurements. The
results, however, suggest that perhaps some disturbance with the
positioning of the sample in the neutron beam geometry might have
occurred. When the neutron results curve is shifted by an amount
corresponding to 1 mm, the neutron and x-ray result curves would almost
coincide. According to all the checks made, a misplacement could not
have been the case, however, it can not be totally excluded as it might
have happened during operation.

A second reason for differences between the two techniques can be
due to the attenuation effect that plays a role in the neutron method. As
can be seen from the figures 6.10 and 6.11, the material possesses a
depth dependent texture which is almost symmetrical with respect to the
sample plane at 5 mm depth. Because of this texture, the attenuation
coefficient, that has to be used for the correction method described in
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Cl?apter 2 depends on the orientation of the neutron beam in the sample
axis system and on the location of the sample volume. Consequently, it
becomes uncertain what value for the attenuation coefficient should be
used, in order to obtain an adequate correction on the 8 different peaks
that were scanned in a bi-axial stress measurement.

. As was mentioned earlier in this section, the presence of texture
influences the determination of stress values from measured strain data,
because the theory of elasticity involved in this is still not adequately
solved. At this stage of the development of the neutron stress measure-
ment technique, however, there are several problems to be solved which
are related to the accurate determination of the lattice spacing itself.
These problems should be solved before the elasticity related texture
problem can be tackled.

In figure 6.7, besides measurements of the stress state, finite element
simulations based on the same rolling process are presented. For the case
of o, there is a reasonable agreement for the bulk region, whereas in the
case of o, there is no agreement at all. The finite element program called
DIEKA that was used in these simulations has been developed for
modelling the cold rolling of thin sheet. When thin sheet is rolled, the
material transport in transverse direction is very limited due to a larger
friction in the direction of the roll axes. In the present case, there has
been about 10% net plastic strain in the transverse direction. This has not
been accounted for in the simulations which must be the reason for the
observed discrepancies between measurement and simulation for o,. The
agreement for o, is good except for the near surface region where some

discrepancies between measurement and calculations exist. There may be
three reasons for this.

1. The finite element mesh used for the calculations consists of
only 5 elements representing the depth direction. This can not
provide sufficient resolution for the very near surface region.

2. The residual stress state at the surface depends on the friction
that exists between the rolls and the material during rolling,
Therefore it depends strongly on the way this friction behaviour
is modeled.

3. Dynamic recovery and recrystallisation have taken place and the
finite element calculations have not taken that into account.
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When we compare the stress situation across the plate thickness
(figure 6.7) and the corresponding profile-breadth changes (figure 6.9),
obtained with x-rays, we notice that up to a depth of about 2 mm from
the surface the residual stresses (both o, and o0,) increase and then start
decreasing in magnitude. On the other hand, the profile-breadth
variations show an opposite trend. The fact that these trends show a
maximum and a minimum for stress and profile-breadth respectively, at
a depth of 2 mm suggest that both variables are related to each other and
the causes for the changes can be the same.

If we assume the plastic deformation to be uniform and ignore a
possible dynamic recovery and recrystallisation for the time being, then
the profile breadth should be nearly constant over the cross section. On
the other hand, if we assume the deformation to be the highest at the
plate surfaces, and decreasing with depth, the breadth variations would
show a minimum at the centre. The results of figure 6.9 do not support
either of these assumptions. The presence of a minimum indicates a
sharpening of the diffraction profile, which can only happen if there was
dynamic recovery and/or recrystallisation resulting in a reduction in
microstrain and/or an increase in domain size. As mentioned before, the
extent of the recovery and recrystallisation will directly depend on the
amount of deformation and the temperature raise. Since the breadth of
a diffraction profile is sensitive to microstructural changes (and not
influenced by macrostresses), from the results of figure 6.9, we may thus
conclude that the deformation and the temperature give the highest
effect with regard to dynamic recovery and recrystallisation at a depth of
about 2 mm from the surface.

The texture results of figures 6.10 and 6.11 strongly support the
occurrence of localized recrystallisation in the rolled plate. In the region
around 2 mm below the surface (i.e. where the integral breadth from
figure 6.9 reaches a minimum), the texture is completely different from
the texture at both the surface and the centre of the plate. Texture
changes on this scale can not be due to dynamic recovery only, but must
be the result of partial or total recrystallisation. The fact that the
macrostresses (i.e. both longitudinal and transversal, see figure 6.7) reach
a maximum value at 2 mm below the surface can be well understood if
recrystallisation has indeed taken place. Due to the recrystallisation, the
density of the material decreases, so during the recrystallisation the
material likes to shrink. However, the material that has recrystallised is
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unc-ier a constraint of both the central part and the surface of the plate
which have not recrystallised because of the local dislocation density anci
temperature respectively as was discussed above. The result of these
constraints is the formation of tensile stresses in the recrystallised
material in both the longitudinal and the transverse directions. This might

eventually explain the differences between measurements and finite
element calculations.
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7

Evaluation

7.1 INTRODUCTION

The development of an instrumental technique for stress measurements
by means of neutron diffraction was the aim of this work and the subject
of discussion in the earlier chapters. Most problems encountered with the
developed prototype instrument which is at Petten have been thoroughly
treated although not all attempts have led to satisfactory solutions. Also
the data treatment has had its fair share of attention. On the basis of
what has been accomplished so far, a decision was taken to develop a
new instrument which will be completely dedicated for performing stress
measurements. The experience gained from the experiments carried out
so far has been used in the development of this newly built instrument.
In this chapter we will discuss the shortcomings of the prototype diffrac-
tometer and the possible improvements. Most of these improvements are
incorporated in the new instrument.

7.2 A NEW INSTRUMENT

The prototype instrument that has been described in the previous
chapters showed a number of shortcomings. These are described below.

1. The old instrument is a temporarily reconstructed powder
diffractometer. As normal powder measurements still have to be
performed every now and then, the instrument is not 100% of
the time available for stress measurements. Due to this reason,
a lot of time is lost in reconstructing the set-up after a series of
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powder measurements. As will be clear from the previous
chapters, the modification and alignment is a time consuming
task (time consumption for reconstruction and realignment is
estimated to be about 7 to 10 days). The reactor shut down
periods can not be effectively used for this purpose, as most
steps in the alignment sequence actually need neutrons.

The mechanical parts of the powder diffractometer are not
designed for operations with the precision that is required for
the alignment of the beam apertures and the sample positioning
required for stress measurements. All the time a lot of improvi-
sation is needed to obtain the desired precision. Backlash
problems and mechanical instability are the main causes for this.
All the translation movements are controlled by software
operations. Phere is no independent hardware to check the
positions of the translation movements. If one of the translations
is mechanically disturbed, the position of the specimen relative
to the sample volume is lost. In the course of the work des-
cribed here this has occurred several times.

The powder diffractometer operates with a fixed wavelength.
This means that the diffraction angle for a material to be
investigated, cannot be varied. This leads to the situation that
there is no possibility to change the wavelength such that the
diffraction from the chosen reflection takes place at a scattering
angle of 90°, which is the ideal diffraction angle from the
umbrella effect problem and spatial resolution points of view.
Since no wavelength scan can be performed, the attenuation
problem that was discussed in Chapter 2 will remain.

The dimensions of a sample used in powder diffraction are
much larger than the sample volume required for stress mea-
surements. This means that the beam tubes and the mono-
chromator space used for the powder instrument do not provide

as much background shielding as one would desire for stress
measurements.
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around their axes, vertical to the plane of the
condition imposed by Bragg’s Law.

mator. The wavelength can be changed by
crystals. During this, the crystals are turned
drawing, in order to maintain the reflection

1. The application of a double monochromator instead of the
single monochromator that is currently used in the powder
diffractometer. In figure 7.1 an overview of the principle of a
double monochromator is given. The advantage of this mono-
chromator is clear. The wavelength of the primary beam is
variable within a broad range (viz. from 0.15 to 0.65 nm). While
scanning in this wavelength range, both the orientation and the
position of the primary beam are not changed, meaning that the
diffractometer can be fixed to one position. It is important to
note that this can never be accomplished by a single mono-
chromator. The material chosen for both reflecting crystals is
pyrolytic graphite rather than single crystal copper which is in

In order to deal with these shortcomings, a completely new set-up has

been designed and manufactured. The specific features of this instrument
involve

use in the powder diffractometer monochromator. As such, this
new instrument is capable of performing wavelength (1) scans

rather than scattering angle (20) scans. This eliminates all the
problems that evolve from the attenuation effect. The freedom




126 Evaluation

of choice on the wavelength, gives the opportunity to choose a
scattering angle of 90°, thus eliminating the umbrella effect.

2. As the new instrument is a dedicated one, no time will be lost
in rebuilding the set-up and repeating the alignment procedures.
For the same reason the shielding of the neutron beam can be
tuned to the required primary beam dimensions.

3. The instrument is manufactured with the most modern types of
automated machining techniques, thus enabling a better
dimensional accuracy than the prototype one. All parts, such as
the co-ordinate table and both aperture systems are designed to
cope with substantial destabilizing forces before showing any
deviation from their stationary positions.

4. The amount of safety circuits has been increased. An automatic
switch off of'the motors has now been designed such that when
a motor is forced to stop at a position where a limit switch has
been hit, the measurement computer will remember the position
of the interrupted movement. Also a secondary safety circuit has
been installed in the form of home switches. Home switches are
used to automatically check any drift in the motor positions
during the course of the measurements.

5. The maximum permitted load on the specimen table has been
increased to 100 kg (it was about 50 kg with the prototype).
Even when a full load is applied, the dimensional stability and
the tolerances are maintained. In this way, heavier specimens
can be investigated.

This section is meant as an evaluation of the steps taken so far,
towards the design of what we think will be an ideal instrument to fit our
purposes. Regretfully, there are not yet enough results available from this
instrument for a preliminary evaluation of its performance.

7.3 POSSIBILITIES AND LIMITATIONS

As was already mentioned in chapter 1 the possibilities for stress
measurements by means of neutron diffraction are numerous, Many
industrial problems like fatigue, fracture, wear, stress corrosion and
welding deformations, can be traced back to residual stresses. Having the
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possibility to tackle these problems by means of neutron diffraction stress
measurements, may bring about a solution or at least a better under-
standing of these problems.

Perhaps the most interesting field of research is the verification of
finite element calculations, which can be applied on almost every case in
which residual stresses play a role. As far as this thesis is concerned, a
number of examples of this possibility have already been shown.

While selecting problems to be investigated, one has to realize the
intrinsic limitations of the method, which are:

1. A better spatial resolution better than that corresponds to a
sample volume of 10 mm?3 is unlikely to be obtained. Therefore,
specimens to be investigated should not have very sharp stress
gradients in the measurement directions. This limitation is
coupled to the time consumption problem. The neutron
measurements presented in this research work have taken
between 20 and 40 hours of neutron beam time per stress as-
sessment. The time consumption is influenced by the material
under investigation and by the precision one likes to obtain for
the stress determination.

2. In order to determine tri-axial stress states, the value of the
strain free lattice parameter should be known. This causes

problems for specimens made of material for which stress free
samples are unattainable.
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APPENDIX 1
THE SINGLE KNIFE EDGE

ALl INTRODUCTION

!
r
|
‘ One of the steps in the alignment procedure for the neutron diffracto-
‘ meter in stress measurement mode is the determination of the direction
' } j of the primary beam in the co-ordinate system of the specimen table.
\

A direction is defined by two points. The determination of the
position of the centre line of the primary neutron beam, which is one of
y the twp points neec%e.d, is the purpose of the single knife edge 'experiment.
' Knowing this position, subsequent steps can be taken in order to
determine the direction of the beam (i.e. the double knife edge ex-
i periment, see Appendix 2).
| % The principle of the single knife edge scan is very simple. The |

i neutron beam that is spread out by primary beam aperture is covered by |
a neutron absorbing wedge (the single knife). The coverage is removed
in a stepwise manner, while between the steps the intensity of the part of
the beam that passes the wedge is measured. This process continues until
i the beam is completely open. Qualitatively, the measured intensity as a
: ‘: function of the wedge position yields a monotonically rising curve with a
| constant minimum at the beginning and a constant maximum at the end.

From this curve we want to obtain the wedge position at which half of
the beam is covered.

Al.2 THE SINGLE KNIFE EDGE

The construction of the single knife edge is given in figure Al.1. In this
figure also the beam geometry is shown. The single knife edge is built of
an aluminium knife holder in which the knife, a cadmium plated brass
wedge, is held. The assembly is placed on the specimen table of the
diffractometer and rigidly connected to it. The relative position of the

131




132 The single knife edge

knife holder

x|

primary beam

7

Fig. AL1 The single knife edge assembly in the primary beam geometry.

Fig. A1.2 The intensity profile seen at a distance d from the primary beam aperture as a
function of the co-ordinate perpendicular to the beam direction. The numbers in the figure
refer to the functions derived in the text. The shaded area symbolizes the intensity that is
currently ’seen’ by the detector (cf. figure AL.1).

A . .
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km'f’e- edge perpendicular to the primary beam direction js called x. The
position of the centre line of the primary neutron beam is denoted as x,,

edge scan data. A standard fitting procedure, based on the algorithm of
Levenberg-Marquardt [AL1], will yield estimates of the errors in
the free parameters of the theoretical model.

The scan starts with the single knife fully covering the primary
neutron beam. The neutron detector, situated at the direct beam position
will now only detect background radiation I,. The detected intensity J as’
the knife assembly is moved towards the positive x direction (ie
}mcovering the beam) can be deduced from the intensity profile shown
in figure A1.2. The total measured intensity at some x js equal to:

Ikx) = dI (Al.1)

Xy~ Yo —Yoad

proportionality constant.

1. X <Xx, - Yaw — Ynd

2. xo—l/zw—l/zade<x0—1/zw+1/2ad
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(x = x, + Yaw + 1/zad)2]
2ad 0

+ 1, (A1.3)

I =

3. x0—1/2w+1/zaa'5x<xo+1/zw—1/zad
I == xg + YWl + T (Al.4)

4, x0+1/zw—1/zad$x<x0+1/zw+1/zad

X, — x + Yaw + Yad)?
r=1,- % — Sl (ALS)
Ve
5. x 2x, + Yw + Yead
I=1I+1I (AL.6)

In order to obtain the value of x, from the equations Al.2 to Al.6 they
have to serve as the model function in a Levenberg-Marquardt fitting
procedure. Input to this fitting procedure are a number of intensity
measurements as a function of the knife position. As the intensity values
have errors based on counting statistics, their square root values are given
as the internal errors. The free parameters in the fitting process are: x,,
Io, Iy, w, and the product ad. In practice, the function has proved very
helpfull in establishing correct values for the parameters mentioned. An
example of the use of this function is given in Chapter 4.
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APPENDIX 2
THE DOUBLE KNIFE EDGE

A2.1 INTRODUCTION

During the alignment procedure for the neutron diffractometer, we want
to obtain a physical reference for the primary beam direction, This
reference is used for aligning the primary and secondary beam apertures
py means of a dial gauge. The single knife experiment, which was treated
in Appendix 1, yields a specimen table position at which a cadmium knife
1s half way closing the primary beam. This position is called x (See
Appendix 1). At the stage that x, is known, another type of exper?iment
must lead to the determination of the relative direction of the centre Jine
of the beam which will be called y,. The experiment that delivers this
parameter is called the double knife edge scan.

. The principle of this scan is as simple as the principle of the single
knife edge scan. Now, however, two knives instead of one are used and
tl.le Scan parameter is not a translation perpendicular to the beam
direction, but a rotation around the centre of the diffractometer. The
stepwise rotation begins at the situation that one knife covers the beam
completely and continues until the other knife covers the beam. Between
these two extremes, a maximum corresponding to the situation that the
two knife edges are in line with the beam exists. The purpose of the
single knife edge has thus been reduced to finding out at which knife
position, the double knife edge scan should be performed.

As the accuracy in direction of the beam must be estimated. a
mathematical treatment of the function that describes the double kn’ife
edge scan will be given. Using this function in a parameter adjustment
procedure will yield the uncertainties in the determined parameters,
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knife holder

] — ' primary beam
vil + a2 = A

/

Fig. A2.1 Construction and beam geometry of the double knife edge.

Fig. A2.2 Two profiles of the intensity as a function of the co-ordinate perpendicular to t.he
beam direction which has been transformed into terms of Y — 9, These profiles are actxv.e
during the double knife edge scan. The intensity that is currently ’sgen’ by the de}ector is
represented by the shaded area (note that the shaded area in the right side .proflle has a
negative contribution). The numbers in the figure correspond to the functions that are
derived in the text (case I).

A2.2 The double knife edge 137

A2.2 THE DOUBLE KNIFE EDGE

The construction of the double knife edge is given in figure A2.1. In the
same figure also the beam geometry is shown. The double knife edge is
obtained by putting an extra knife into the empty place of figure A1.1.
The advantage of this construction is that the necessity to dismount the
knife holder from the specimen table is omitted, thus mechanically
conserving the result of the single knife edge scan. The different parts of
the assembly are manufactured such that the connection line between the
two knives is parallel to the back Plane of the knife holder within 0.005°,

Both knife edges should be positioned symmetrically with respect to
the centre of rotation of the diffractometer. This is not very critical as
there will be a free parameter: A/ in the model that takes care of an
unexpected misplacement. In practice, however, the misplacement should
not exceed a few millimetres. In order to arrange the knife assembly this
way, the co-ordinate table (i.e. the y-movement which is along the beam
direction) is used to transport the assembly Y4/ from the primary beam
aperture with respect to the single knife edge scan situation, / being the
distance between the knives.

The scan variable of the double knife edge scan is y, so the purpose
of the scan is to determine the y-value at which the line connecting the
two knives is parallel to the primary beam centre line. This y-value will
be called v,

Usually, there exists a slight misplacement of the double knife edge
assembly with respect to the result of the single knife edge scan: x,. This
is due to an incorrect during the single knife edge scan (after all y, was
not yet known during the single knife edge scan). As a result, the fitting
procedure on the double knife edge scan, may yield a different value for
the aperture opening w than the fitting procedure on the single knife
edge scan. When both values for w are too far apart (e.g. more than say
10 % of w) it is advisable to repeat the single knife edge scan at the
value of y that is the result of the then declared ’preliminary’ double
knife edge scan. In that case, the double knife edge scan must be
repeated at the newly determined X,

The beam geometry is defined by the same parameters as in the
single knife edge scan: a and d and w. Between the scans neither of these
should be changed. In practice this means, that the position and opening
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of the primary beam aperture must be maintained the same during both
scans.

A2.3 THE DOUBLE KNIFE EDGE SCAN FUNCTION

In the following it is assumed that the scan starts at the situation that the
knife closest to the aperture defining the primary beam, is covering the
beam completely so that only the background radiation I, is detected by
the neutron counter. The direction of ¥ is chosen to be counterclockwise.

In figure A2.2 the intensity profile of the beam at the counter side
of the double knife edge is given. The ordinate of figure A2.2 is y - Yo
so the integration parameter for the integration of d will be . In figure
A2.2 the detected intensity /(y - y,) is seen to be proportional to the
hatched surface under the curve. It should be noted that the surface
under the right hand part of the curve has a negative contribution. The
proportionality constant will be set equal to I,

There exist two distinct geometrical modes for the double knife edge
scan. The underlying reason is that the beam possesses a finite divergence
a. This means that every obstacle that enters the primary beam gives rise
to a trapezoid shaped intensity profile behind it. Unfortunately, not only
the primary beam aperture can be regarded as an obstacle (two obstacles,
to be exact), also the first knife encountered by the beam serves as a
moving obstacle that influences the profile to be covered by the second
knife as the scan proceeds. Because the knives are rigidly connected by
means of the knife holder, the profile encountered by the second knife
is influenced by the first one in a predictable way. For the derivation of
the intensity function for the double knife edge scan we have to account
for this phenomenon. The most important effect of the moving intensity
pattern is that depending on the value of the geometrical variables, two
different situations exist.

Yow — Yea(d + Y — Al)
vl — Al

. Yo <

This corresponds to the situation that the divergence spread out by the
first knife seen from the beam aperture (see figure A2.1) is covered by
the second knife before it enters the lower divergence wedge of the
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prirpary beam aperture. The intensity function is now divided into 7
regions:

L oy -y, < 2 ==Y - A)a
vl + Al

I =1 (A2.1)

—Vow — (d - Y — AV
2. -
vl ¥ Al =Y T Y <

. VWt (d = % — Al
Wl + Al

, (@ = v)esl + Al + vaw + (d — - Al

2d - % - ADa fo
+ 1 (A2.2)

3. YW+ (d - W~ Al
Wl + Al

<y -y, < ~Ya

I'={ - w4 + Al + Vow) I, + I, (A23)
4. —Ya sy -y, < Y

I'={vw + @y - )4 + AD} 1, ~

e -y + v}’
2a

I, + 1, (A2.4)

5. =y -y, < 2@+ Y- Ay
ol — Al

I={mw - (@ -y - AD} I, + 1, (A2.5)
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Vaw — (d + W — Al

6. <y -y, <
ol — Al v =¥
o Yw + (d + % - Ao
vl — Al
{vow + (@ + W — Ay = (p = ) - ADY ,
= +
2(d + ¥ — Ala 0
y (A2.6)
Vaw +'(d + % — Al)va
TV ¥ S (1/21—A1 )
I =1 (A2.7)

b

The second geometrical possibility is the logical complement of the first
one so:
Yow — Yaa(d + Y — Al)

Yl — Al

I Y =

This corresponds to the situation that the divergence spread out by the
first knife (see figure A2.1.) is not yet covered by the second knife before
it enters the lower divergence spread out by the aperture. The intensity
function is again divided into 7 regions.

—-Yw — (d — Y — A)Ya

1. -y <
v =¥ 1wl + Al

(A2.8)

—Vaw — (d — Vi — Al
vl + Al

2.

Sy -y, <

< TYw + (d = Y - Al)a
Yl + Al
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o = w0+ aD + v+ @ - - A’
2d — Vi = Aa Iy +
+ 1 (A2.9)

3 YW+ (d = % — Al
Vil + Al

SY -y, < VY

I'={w - p)(4 + Al + Vaw} Iy + I (A2.10)

4. —Vzas¢—¢0<%w—(d+1/21-A1)1/za
Wl — Al

I'={vw + (¥ - p)CA + A} I, -

_l{(tp—zpo)+1/za}21 ,

L I (A2.11)

5 Yoaw — (d + Y — AV
Yol — Al

=Y -y, < Y

I = {1/2w + (W = Y )(A + Al)} I, - 1{(¢ ~ Yt l/za}z I +

2 0
LA - v~ A) - v+ v+ - A
2a(d + Vi — Al) Iy +
+ 1 (A2.12)
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{ow + @ + W - Ay - (y = )l - Anf’ -

2(d + Vi — Ala °
+ 1, (A2.13)
: Yw + (d + B — ADVg
Y oYz (l/zl—Al )
I=1 (A2.14)

In order to use one of the set of equations defined above (either A2.1 to
A2.7 or A2.8 to A2.14) to obtain ¥, from the data of a double knife edge
scan, the equations serve as the model in a Levenberg-Marquardt fitting
procedure [A2.1]. The free parameters are Al, w, I, I, a, and Yo-
The decision between case I and case 11 is left to the fitting algorithm in
order to avoid a non logical outcome of the calculation. The model has
proved to be very successful in calculating the parameters and their error
estimates. An example of the use of the model is given in Chapter 4.
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APPENDIX 3
ENTERING CURVES

A3.1 INTRODUCTION

After having gone through the sequence of alignment procedures
Involving the single- and double knife edge scans, the neutron diffrac-
tometer including its beam aperture systems can be €xpected to be well

aligned. At this stage two actions have to be taken in order to start a
measurement.

1. The quality of the alignment should be checked.
2. The location of the Specimen axis system in the beam geometry
should be established.

In order to achieve both goals at the same time, the ability of a
specimen to diffract neutrons will be used.

The aperture systems that are connected to the diffractometer define
a rhombic prism in space: the sample volume. The axis of the prism is
expected to coincide with the diffractometer axis. When the specimen is
moved towards the diffractometer centre, the specimen material will start

the orientation of the specimen, beam attenuation might play a role.
In the next sections two models — called entering curves — will be

presented that give the integrated intensity as a function of the relative
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A3.2 .
Entering curve at Y =0 145
rectangular box filled with iron powder. The walls of the box are made specimen incident beam specimen
of vanadium sheet having a thickness of 0.1 mm. o

When the integrated intensity of a diffraction peak is measured as a
function of the relative position of the specimen surface for the two
orientations of ¢, the location of the centre of gravity of the sample
volume can be found by means of a least squares fitting procedure using
both models [A3.1]. The fit results belonging to each of the two
models should give the same value for the relative surface position at
which the diffractometer axis is situated exactly in the specimen surface.
Comparing these results is a way to check the quality of the alignment
quality achieved by the procedures that were treated in Chapter 4.
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A3.2 ENTERING CUKVE AT y = ¢°

The primary and secondary beam apertures, both of width w define a
rhombic prism in space. The rhombus is defined by w and 26 (see figure
A3.1). In the well aligned situation, the point of intersection of both
diagonals of the rhombus coincides with the centre of rotation of the
diffractometer. The to be derived function will be such that at x,, the
intersection the diagonals of the rhombus lies in the specimen surface.

From the thus defined region, a diffracted intensity / is expected
which differs from the background value, when some part of the region
contains specimen material. The measured integrated intensity from a
partly occupied region (to be characterized by x) can be calculated by
integrating over the occupied part of the surface region. One aspect of
the ¥ = 0° case is that the intensity, obtained from a co-ordinate
somewhere below the specimen surface, is attenuated due to absorption
along the total travelling path for a neutron to and from that particular
coordinate. This depth dependent attenuation, is described by an
absorption factor, which includes the absorption coefficient u.

In the left part of figure A3.1 the cross-section of the stationary
rhombic prism is shown together with the moving specimen. The function
that describes the integrated intensity as a function of the relative
specimen position is divided into 4 x-regions. In the next equations I, is
a proportionality constant, I, is the background intensity and Dy Is half the ‘
rhombus diagonal which is oriented perpendicular to the specimen. It can

be shown that Fig. A°3.1 The beam geometry during fogr distinct states
Y = 0° (left sequence) and at Y = 9(Q° (right sequence).
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_ sinf (A3.1)
0 sin 26

Using the now defined parameters, the model that gives the
integrated intensity as a function of the relative position x will be:

. x<x, - p,

I=1 (A3.2)
2. xy—p,=x <x,
1=10x—x0+%_105in29{1_es_flﬁz‘;,‘(x-xo+po)}+
Iz 2u
+ I, (A3.3)
3. xy=x<ux,+p,
sr TP T (A34)

0o b

u
4. x =x, + p,

. —2u . _ T -
sm0{ AP A

1=10__2 eS +e
2u

-, - po)}

i, (A3.5)

Equations A3.2 to A3.5 give the expected integrated intensity as a
function of x and a number of parameters. From the measurement of /
at a series of x-values, the values of the unknown parameters can be

A33 Entering curve at y = 90° 147

obtained by a Levenberg-Marquardt process. The free parameters that
will enter this process via the function defined above are: x,, w, I, I, and
u.

A3.3 ENTERING CURVE AT Y = 90°

For the situation where ¥ = 90° ie. when the diffraction vector q is
parallel to the specimen surface, the derivation of the integrated intensity
as a function of the relative sample position is less complicated as the (]
= 0° case. In this case, the total traveling path for neutrons in the
specimen material (the sum of the path to and the path from a specific
coordinate) is not dependent on the position in the specimen. This is due
to the bar shaped form of the specimen. Therefore all absorption
information will be hidden in the parameter I,

The geometry for this case is given in the right part of figure A3.1,
where it is clearly visible that the beam leaves the specimen on the
opposite side from which it has entered the specimen. The parameter that
symbolizes the situation where the intersection point of the two rhombus
diagonals meets the specimen surface is called xy. The length of the

diagonal that is now perpendicular to the specimen surface is called Doos
its value is

_ cos6
cos20

w (A3.6)

The model that gives the integrated intensity as a function of relative
specimen position is divided into 4 x-regions:

L x < x4 = pg,

I=1 (A3.7)

I'=1x-x, + Po)* + I (A3.8)
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3. Xgo =X < Xy + Py

I =1 {2,0920 — (¥ + Py — x)z} + I (A3.9)
4 x=zx, + Py

I=2p2+1 (A3.10)

Equations A3.7 to A3.10 give the expected integrated intensity as a
function of x and a number of parameters. From the measurement of
at a series of x-values, the values of the unknown parameters can be
obtained by a Levenberg-Marquardt fitting process. The free parameters
that will enter this pro€ess via the model defined above are: Xg0, W, 1), and

I,
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Summary

The residual stress state of a material is one of the characteristics that
determine the mechanical properties of a material. Its origin stems from
the manufacturing routes such as shaping, joining, heat treatments etc. It
can be determined in various ways.

Most measurement techniques are limited to the surface of materials,
however, also the residual stress state in the interior of materials is of
importance for the behaviour of the material.

In this thesis the method of neutron diffraction, with which it is
possible to measure the residual stress state in the interior of crystalline
materials, is studied. This method is based on the precise determination
of the distance between crystallographic lattice planes. In this work,
besides the presentation of the necessary mathematical tools, an overview
is given of the required experimental set-up. The solution of alignment
problems and the use of the set-up for actual measurements comprise an
important part of the work described.

The results obtained by means of neutron diffraction are compared
to those obtained by using two other stress determination methods. In the
first place this is the well established experimental technique of x-ray
diffraction and secondly a theoretical technique, based on finite element
calculations.

The presented measurements have been limited mainly to ultra low
carbon steel. However, by measurements on a ceramic material it was
shown that the technique can be used on any crystalline material.

As far as the steel type specimens are concerned, measurements have
been carried out on several quenched cylinders and on a cold rolled plate.

Both types of samples possess residual stresses that are characteristic for
their production processes.
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152 Summary

Based on the results, an evaluation is made about the requirements
for instrumentation, that performs stress measurements by means of
neutron diffraction with an optimum result in the shortest possible
measurement time.
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