Power-to-Heat in Industry

Spoelstra, S.

October 2016
ECN-L--16-049
Content

- Dutch energy system
- Power to Heat
- Flexibility options
- Electrification options
- Summary
A sustainable Dutch energy system

Dutch final energy use 2015
- excluding feedstock
- excluding transport

Source: CBS
Why & when P2Heat?

• Flexibility
 – Making use of increased volatility of electricity market
 – Response time - short
 – Operating hours – relatively low
 – Allowable investment costs – low

• Electrification
 – Making use of electricity as energy carrier for your processes
 – Response time – less an issue
 – Operating hours – high (base load)
 – Allowable investment costs – higher
Flexibility options
Flexibility
- Direct electrical heating -

• Characteristics
 – Electrode boilers
 – Commercially available
 – Fast response time (< 1 minute)
 – High steam pressures

• Economics

Up to 60 MW in 1 unit

Price duration curve 2030
Direct electrical heating
- Business case -

• Marginal cost comparison
• Efficiency for heating
 – Gas = 100%
 – Electric = 100%
• Room for investment based on simple pay back time of 3 years
• Investment costs electric boiler 60 – 200 k€/MW (Source: Energinet)

<table>
<thead>
<tr>
<th>Gas price (€/m³)</th>
<th>Gas price (€/GJ)</th>
<th>Operating hours</th>
<th>Room for investment (k€/MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>6</td>
<td>164</td>
<td>6</td>
</tr>
<tr>
<td>0.26</td>
<td>8</td>
<td>298</td>
<td>11</td>
</tr>
<tr>
<td>0.33</td>
<td>10</td>
<td>617</td>
<td>20</td>
</tr>
<tr>
<td>0.4</td>
<td>12</td>
<td>2848</td>
<td>53</td>
</tr>
</tbody>
</table>
Flexibility
- Flex CHP -

- Electricity system requires more flexible power generation
- Industry needs reliable and affordable steam/heat
- CHP with heat storage offers operational flexibility
 - Decoupling heat and power production (for a limited time)
 - Deliver electricity during high prices
 - Operate CHP at highest efficiency
 - High-temperature heat storage for reliable heat delivery
- Examples in operation
 - Agriculture: gas engine + hot water buffer
 - District heating: CHP + hot water buffer
Industrial CHP with HT-heat storage

• Heat storage technologies
 – Sensible heat storage
 – Ceramics 1000°C
 – Molten salts 550°C
 – Steam accumulator 250°C
 – Latent heat storage
 – Phase Change Materials (PCM)
 – Commercially available 80°C
 – Under development 100 - 250°C

• Heat storage capacity 10 GJ – 10 TJ
• Thermal power >> 1 MW
CHP + Heat storage
- Business case -

• Profits
 – Price level differences in E-market

• Investments
 – Storage system & integration
 – PCM costs ≈ 750 €/GJ
 – Optimize the thermal storage capacity

• Operating hours
 – Requirements for CHP ramp-up / ramp-down
 – Maximize number of charge-discharge cycles
 – Accept small E-price differences in flexible operation to increase the number of cycles

• Pay back time
 – Work in progress
Electrification options
Electrification
- Direct electrical heating -

- Electrode boilers (as with flexibility)
- Infrared heating
- Induction heating
- Microwave heating
- Resistive heating

- Business case not feasible for base load operation (for the near future) based on marginal energy costs

- Other drivers
 - Product quality
 - Safety
 - Process control
 - Producing other products
 - Scale of operation
Electrification - Electrical heat pumps -

<table>
<thead>
<tr>
<th>Steam boiler</th>
<th>Heat pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steam demand (kton/yr)</td>
<td>128</td>
</tr>
<tr>
<td>Steam demand (kton/yr)</td>
<td>128</td>
</tr>
<tr>
<td>Electricity use (GWh/yr)</td>
<td>20</td>
</tr>
<tr>
<td>Steam price (€/ton)</td>
<td>20</td>
</tr>
<tr>
<td>Electricity price (€/MWh)</td>
<td>50</td>
</tr>
<tr>
<td>Primary energy use (TJ/yr)</td>
<td>317</td>
</tr>
<tr>
<td>Primary energy use (TJ/yr)</td>
<td>174</td>
</tr>
<tr>
<td>Energy costs (M€/yr)</td>
<td>2.6</td>
</tr>
<tr>
<td>Energy costs (M€/yr)</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Electrical heat pumps
- Business case -

<table>
<thead>
<tr>
<th>Gas price (€/m³)</th>
<th>Gas price (€/GJ)</th>
<th>Operating hours</th>
<th>Room for investment (k€/MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>6</td>
<td>8653</td>
<td>231</td>
</tr>
<tr>
<td>0.26</td>
<td>8</td>
<td>8750</td>
<td>420</td>
</tr>
<tr>
<td>0.33</td>
<td>10</td>
<td>8760</td>
<td>609</td>
</tr>
<tr>
<td>0.4</td>
<td>12</td>
<td>8760</td>
<td>798</td>
</tr>
</tbody>
</table>

- COP = 4
- Simple pay back time = 3 years

Typical investment for industrial heat pumps is **250 – 500 k€/MW**, depending on size and temperature conditions, excluding integration.
Electrical heat pumps
- Technology -

- **Vapor compression cycles**
 - Reversed Rankine cycle
 - Phase transition – limited operating window
 - High efficiency & heat transfer
 - Working media like CO$_2$, NH$_3$, hydrocarbons, H$_2$O, R245fa, ...

- **Gas cycles**
 - Stirling, Brayton cycle
 - Wide operating window
 - Somewhat lower efficiency & heat transfer
 - Working medium Helium, Air, ...
Electrical heat pumps
- Developments -

- **T_source** = 55°C
- **T_sink** = 150°C
- **Q** = 150 kW
- Ongoing

- **T_source** = 55°C
- **T_sink** = 120°C
- **Q** = 200 kW
- COP = 3.6

- **T_source** = 50-120°C
- **T_sink** = 100-180°C
- **Q** = 10 kW
- Exp ongoing
Electrical heat pumps
- Technology needs -

- Higher operating temperatures
- Cost reduction
- Integration aspects
- Increase thermal power output
- Higher temperature lifts
- Increase efficiency
- New working media
- New thermodynamic concepts
Summary Power-to-Heat

- Power-to-Heat can provide a solution for industry to cope with a flexible energy system with an increasing share of electricity.

- **Flexibility**
 - Direct heating
 - Heat storage
 - Business case challenging due to limited operating hours

- **Electrification**
 - Long term option for high-temperature heat (> 250°C) is direct heating
 - Electricity price < gas price
 - Other drivers
 - Electrical heat pumps for heat supply up to 250°C
 - Business case within reach
 - Technology developments ongoing to extend working range and reduce costs
Thanks for your attention

Simon Spoelstra
Westerduinweg 3
1755 LE Petten
The Netherlands

T +31 88 515 4523
spoelstra@ecn.nl
www.ecn.nl

P.O. Box 1
1755 ZG Petten
The Netherlands

The Netherlands