

Towards Biorefinery Piloting with Isobutanol as the Platform Molecule

Results of the IsoButanol Rotterdam platform project

Presented at the EUBCE 2016, 24th European Biomass Conference & Exhibition, Amsterdam, The Netherlands, 6-9 June 2016

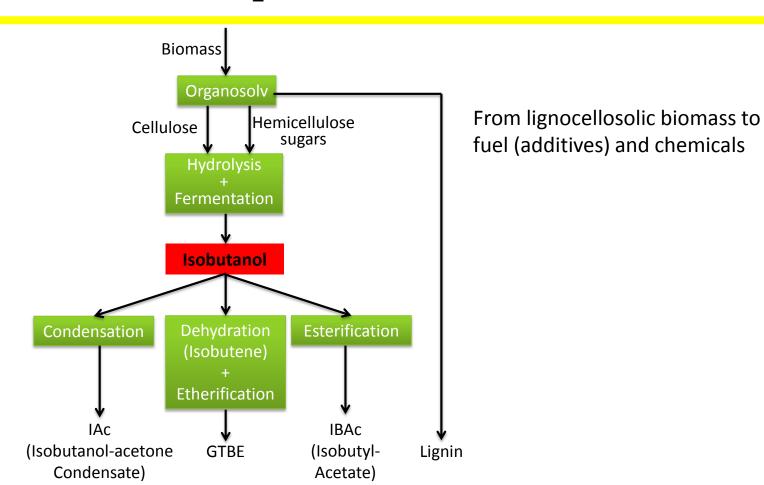
Towards Biorefinery Piloting with Isobutanol as the Platform Molecule

Results of the IsoButanol Rotterdam platform project

<u>Jan Wilco Dijkstra</u> ECN Wouter J.J. Huijgen ECN

Adrie J.J. Straathof Delft University of Technology

Florent Collas Wageningen UR/FBR
Ana López-Contreras Wageningen UR/FBR
Hennie Zirkzee Zirk® technology


Wouter Wermink Procede

Andrea Ramírez Utrecht University

Jaap W. van Hal ECN EUBCE, Amsterdam, 8th June 2016

Isobutanol as a platform molecule

IBPR Consortium,

The IsoButanol Platform Rotterdam (IBPR) consortium has:

- Demonstrated all steps in a biorefinery process experimentally
- Assessed the technical, economic and life cycle potential
- Is now ready for scale-up to pilot (~100 kg/hr feed)

Organosolv fractionation

Successful fractionation producing multi-kg scale batches from spruce and poplar wood

Cellulose pulp

Hemicellulosic sugars

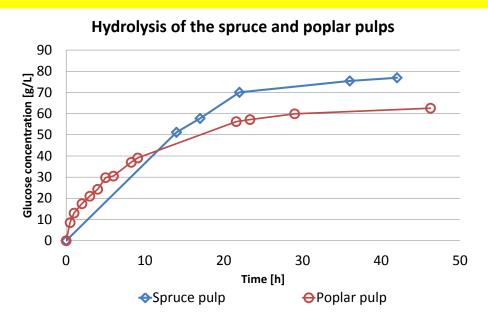
High-quality lignin

Organosolv can fractionate all types of lignocellulosic biomass

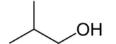
Cellulose

Lignin

ECN PULP FROM BIRCH



Hydrolysis



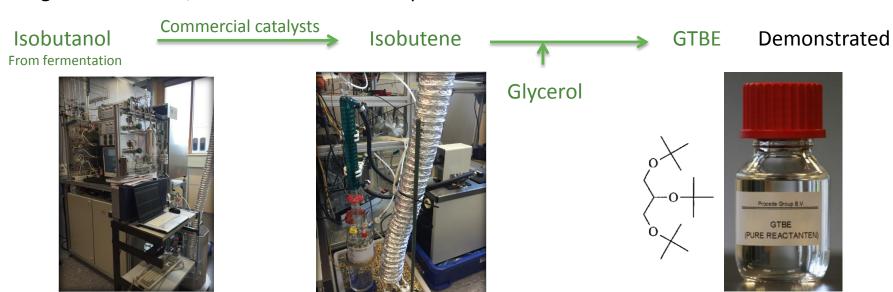
- Organosolv pulp hydrolysed using commercial cellulase cocktails
- Yield: up to 90 g/L glucose for spruce and 60 g/L glucose for poplar wood.

Production of isobutanol

 Successful fermentation using hydrolysates from organosolv-pretreated spruce and poplar wood

 Upgrading: successful dewatering using hybrid silica (HybSi®) pervaporation membranes (Pervatech)

Isobutanol from wood



GTBE production

GTBE = Glycerol tert-butyl ether high value biofuel/additive for diesel with proven emission reduction

Preparations for introduction of GTBE (REACH, immersion experiments)

IAc and IBAc production

 IAc = isobutanol acetone condensate C11 and C15 fraction: Green precursor for fuel blend (diesel, gasoline, jet, bio-naphta)

Isobutanol + acetone

IAc + water

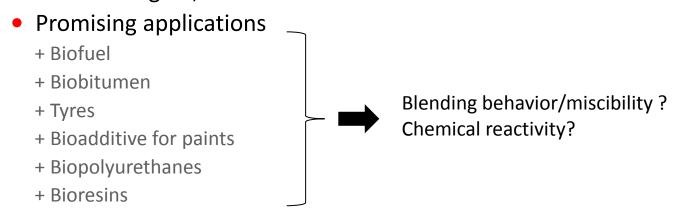
Demonstrated

IBAc= Isobutyl acetate Versatile colorless renewable solvent

Isobutanol + acetic acid ______ IBAc + water

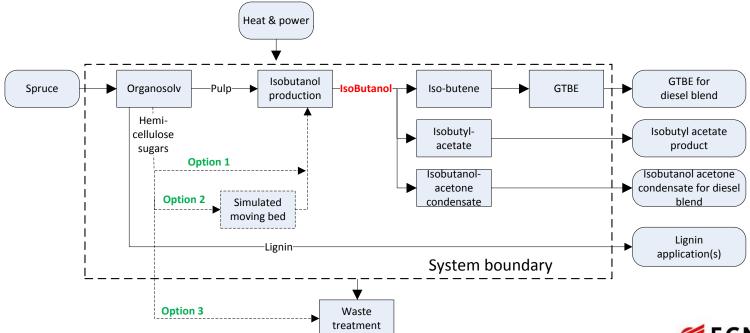
Demonstrated

Alternatives: transesterification with methyl-acetate and combination of both


- Overcoming the equilibrium limitation
- → High potential of pervaporation membranes, 80-100% conversion reached

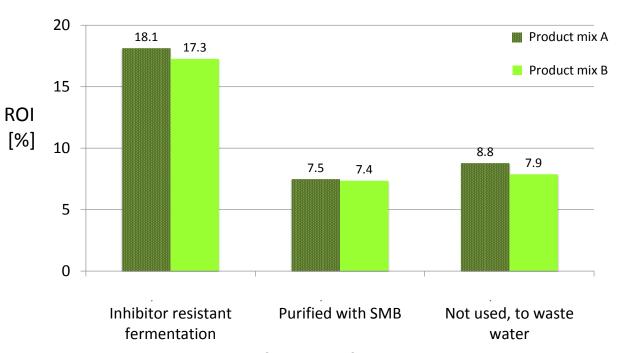
Lignin applications screening

Near-native lignin, low sulfur content


- Lignin as a solid fuel
 - + Pulverization
 - + Little by-products
 - ! Dust explosion risk

Techno-economic evaluation

- Detailed Aspen Plus modeling of all sections of the process
- Full size and pilot plant design (1 Mton/yr biomass feed)
- Equipment sizing and economic evaluation



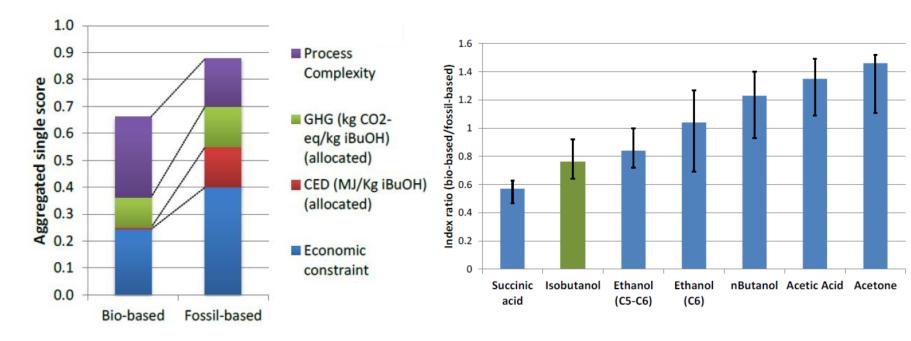
Economic assessment

Best case:

ROI = 18 %

POT = 6 years

Option for use of hemicellulose stream



Sustainability assessment

Index ratio = combining scores on economics, energy/GHG impacts and process complexity

→ lower is better

Life cycle assessment

Cradle-to-gate analysis results

Category	Result
Agricultural land occupation (ALO)	~ 45 m ² a/kg isobutanol
Non-renewable energy use (NREU)	-/- 45%
Greenhouse gas emissions (GHG)	-/- 25%
Water depletion (WD)	-/- 58%

Conclusions and Outlook

- Process presented for bio-based chemicals and fuel (additives) via the platform molecule isobutanol
- Experimental proof of the full chain of process steps at lab-scale
- Detailed techno-economic and LCA analysis show promising results
- Next is scale-up to pilot (100 kg/hr)
 - Setting up a consortium with provincial government support
- Opportunities to join the consortium for parties throughout the value chain
 - Product end-users
 - Process operators
 - Equipment manufacturers and OEM's

Acknowledgements

Investing in your future.
The IBPR project is partly financed by the European Development
Fund of the European Union.

The ministry of Economics Affairs of the Netherlands (EZ)

ECN

Westerduinweg 3 1755 LE Petten The Netherlands P.O. Box 1 1755 ZG Petten The Netherlands

Contacts: Jan Wilco Dijkstra dijkstra@ecn.nl Jaap van Hal vanhal@ecn.nl

T +31 88 515 49 49

F +31 88 515 44 80

info@ecn.nl www.ecn.nl

