Modeling the Installation of Offshore Wind Farms
Outline

Contents of slide

- Cost modelling
- The software ECN Install
- What can it do?
- Who is it for?
Offshore Wind Energy

Cost modelling

- ECN’s O&M Tool is the industry standard
- Methodology is now used for installation
- ECN Install developed in cooperation with major industry players (Van Oord, Royal IHC)

Example Users of ECN O&M Tool
ECN Install

The Tool – dissemination of the installation process
Inputs - Outputs

Framework

• Input
 – Wind turbine
 – Components
 – Operational bases
 – Vessels
 – Equipment
 – Climate data
 – Permit restrictions
 – Crew working shifts
 – Fixed costs

• Planning
 – Steps
 • (de)Mobilization
 • Loading
 • Travelling
 • Installation
 – Select from input
 – Planning
 • Grouping
 • Ordering
 • Iterating

• Pre-processor
 – Weather
 – Workability

• Outputs
 – Time
 – Resources
 – Cost
ECN Install

The Tool

- **Input**
 - Wind turbine
 - Components
 - Operational bases
 - Vessels
 - Equipment
 - Climate data
 - Permit restrictions
 - Crew working shifts
 - Fixed costs
The user of ECN Install decides the detail of the planning and the accuracy of the results.
Installation modelling

Calculating impact of delays - scenarios

The model calculates project delays caused by:
- Permit or contractual restrictions
- Lack of resources
- Working shifts
- Bad weather
- Harbour locks

Outputs
- Planning with delays
- Breakdown of resources and costs
- Export results to Graphs, MS Excel and MS Office
- Gantt chart
Possible Outputs

Results – planning with delays (export Gantt chart)

<table>
<thead>
<tr>
<th>ID</th>
<th>Task Name</th>
<th>Duration</th>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Jan</td>
<td>Feb</td>
</tr>
<tr>
<td>1</td>
<td>Scour protection</td>
<td>29.38 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Foundations - Aeolus</td>
<td>83.75 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Infield cables</td>
<td>105.08 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Export cables</td>
<td>165.75 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Foundations - P. Osprey</td>
<td>55.83 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Substations</td>
<td>11 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Turbines - Aeolus</td>
<td>106.4 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Turbines - P. Osprey</td>
<td>106.4 days</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Project: Gemini
Date: October 26, 2015 9:49 AM
Weather Delay
Harbour Delay
Shift Delay
The user can create 22 standard graphs using ECN Install
Example Outputs

Results - graphs

Time overview - Step Duration and Average Delays

Resources Variable Costs overview
Example Outputs

Results - graphs

Number of Working and Non-Working Hours per Vessel

Average Cost Breakdown per Resource

Average Cost Breakdown per Vessel

Average Cost Breakdown per Harbour

Average Cost Breakdown per Equipment
Installation modelling

What can it do?

- Design and optimize installation strategy for offshore wind farm
- Determine project planning, delays, costs and risks
- Monitor progress during installation
Installation modelling

What can it do?

- Commercial proof of new and innovative installation concepts
 - Installation methods
 - Support structures & wind turbines
 - Vessels and equipment

Source: Royal IHC

Source: Bugsier and Wärtsilä
Installation modelling

Where are biggest LCOE gains to be achieved?

<table>
<thead>
<tr>
<th>Potential user</th>
<th>Added value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developers</td>
<td>Procurement strategy, marshalling harbour strategy, procurement evaluation</td>
</tr>
<tr>
<td>Contractors BOP / WTG</td>
<td>Execution strategy, logistical strategy, workability analysis</td>
</tr>
<tr>
<td>Investors</td>
<td>Risk scenarios, contingency levels</td>
</tr>
<tr>
<td>Vessel & Equipment designers</td>
<td>Added value of a new design at site specific circumstances</td>
</tr>
<tr>
<td>Port authorities</td>
<td>Added value of the port location for project logistics</td>
</tr>
</tbody>
</table>
Innovative solutions to lower the cost of energy