

Linking technology development to the market – what are the (R&D) needs in the immediate term

J.H.A. Kiel

May 2015 ECN-L--15-033

Linking technology development to the market – what are the (R&D) needs in the immediate term

Black is the colour: thermally treated biomass and its role in our future energy mix Pre-conference workshop AEBIOM European Bioenergy Conference

Jaap Kiel

Brussels, Belgium 04 May, 2015

www.ecn.nl

Two main questions

- What is hampering the commercial market introduction of thermally treated biomass?
- Based on that: what are the main R&D needs (in the immediate term)?
- Focus on torrefaction

Basic drivers for torrefaction still hold (1)

- Biomass is a difficult energy source in view of:
 - Logistics (handling, transport and feeding)
 - End-use (combustion, gasification, chemical processing)
- Difficult properties are:
 - Low energy density (LHV_{ar} = 10-17 MJ/kg)
 - Hydrophilic
 - Vulnerable to biodegradation
 - Tenacious and fibrous (grinding difficult)
 - Poor "flowability"
 - Heterogeneous

Basic drivers for torrefaction still hold (2)

- Biomass upgrading enables decoupling of biomass production and use in:
 - Place
 - Time
 - Scale
- By converting biomass into high-quality bioenergy carriers (solid, liquid or gas), that:
 - Better fit in (existing) logistic infrastructures
 - Allow efficient, reliable and cost effective conversion into electricity and heat, transport fuels and chemicals

Solve biomass related problems at the source

Basic drivers for torrefaction still hold (3)

	Wood chips	Wood pellets	Torrefied wood pellets	Charcoal	Coal
Moisture content (wt%)	30 – 55	7 – 10	1-5	1-5	10 – 15
Calorific value (LHV, MJ/kg)	7 – 12	15 – 17	18 – 24	30 - 32	23 – 28
Volatile matter (wt% db)	75 – 85	75 – 85	55 – 80	10 - 12	15 – 30
Fixed carbon (wt% db)	16 – 25	16 – 25	20 - 40	85 – 87	50 – 55
Bulk density (kg/l)	0.20 - 0.30	0.55 – 0.65	0.65 – 0.80	0.18 - 0.24	0.80 - 0.85
Vol. energy density (GJ/m ³)	1.4 - 3.6	8-11	12 – 19	5.4 - 7.7	18 – 24
Hygroscopic properties	Hydrophilic	Hydrophilic	(Moderately) Hydrophobic	Hydrophobic	Hydrophobic
Biological degradation	Fast	Moderate	Slow	None	None
Milling requirements	Special	Special	Standard	Standard	Standard
Product consistency	Limited	High	High	High	High
Transport cost	High	Medium	Low	Medium	Low

<u>Abbreviations:</u> db = dry basis LHV =Lower Heating Value

sources: ECN (table, fig.1, 3), Pixelio (fig. 2, 5), ofi (fig. 4)

What is hampering the commercial market *GECN* introduction of torrefied biomass?

- More restricted financing possibilities following the economic crisis
- Launching end-user market (co-firing in pulverised-coal-fired utility power plants in Europe) is facing difficult times
- It takes time and effort to build end-user confidence and have torrefied biomass accepted as a commodity that can be traded (internationally)
- Initial expectations were set too high which led to disappointment
- Biomass in general is under debate and opinions on biomass use are changing

•

Launching end-user market (co-firing in Europe) is facing difficult times

- NL Energy Agreement includes max. 25 PJe/year co-firing, providing an opportunity for torrefied biomass
- Also still possibilities in other European countries (e.g. Finland)
- Potential for co-firing in other parts of the world (e.g., Asia, North America)
- Torrefaction enabling technology for (dry feed) entrained-flow gasification of biomass
- Smaller-scale applications, such as industrial Heat (and Power), may provide easier launching markets as the scale better fits the scale of torrefaction production units

Successful co-firing trials help to build end-user confidence and allow product quality optimisation

- Torrefaction technology in demonstration phase with >10 demo-units and first (semi-)commercial units in operation (e.g., Torr-Coal)
- Successful co-firing trials, e.g.:
 - Buggenum IGCC (NUON, 2012)
 - 1200 ton pellets
 - Co-milling
 - Up to 70% co-firing
 - Amer 9 (Essent, end of 2013)
 - 2300 tonne Topell pellets
 - 5-25% co-milling
 - 1-4% co-firing
 - Studstrup 3 (DONG, March 2014)
 - 200 tonne Andritz pellets
 - Dedicated mill
 - 33% co-firing
 - Helsingin Energia Hanasaaren (March 2014)
 - 140 tonne Torr-Coal pellets
 - 14% co-firing

Initial expectations were set too high which led to disappointment

- Initial expectation based on small samples, not on industrial production
- One has to be convincing to get something going
- Instead of yielding immediately *the* ideal feedstock, torrefied biomass pellets development has to follow a learning curve, just as with white wood pellets
- High initial expectations hold in particular for hydrophobicity

Biomass under debate

Biomass use – markets and preferred *GECN* options

- Shift from focus on bioenergy to focus on biobased economy
- Use C and molecular capital
- Aim for maximum added value

• But:

- Energy sector more than an order of magnitude larger than chemical sector We need all renewable energy options, we cannot exclude major ones
- There is enough sustainable biomass to make biomass a major renewable energy option (1/4 1/3 of future global energy use)
- Some parts of the energy sector difficult to cover with other renewables (e.g., HT process heat, biofuels for heavy vehicles, aviation and marine applications)
- Not all biomass qualifies for high-value applications (e.g., heterogeneous and/or contaminated streams)

11

ECN

What are the main R&D needs (in the immediate term)?

- (Continued technology optimisation, scale-up and cost reduction)
- Product quality characterisation, optimisation and standardisation
 - Address torrefaction and densification
 - Guarantee health and safety (e.g., MSDS, REACH-registration)
 - Meet logistics and end-user requirements for a range of applications
 - Facilitate (international) trading (commodity)
- Independent assessment (technology, cost, LCA)
- Broadening the feedstock base
 - Wood residues
 - Lower-quality biomass (e.g., agroresidues, SRF)
- Torrefaction as part of co-production schemes for bioenergy carriers and high added value products

The SECTOR project

- Collaborative project: SECTOR
- Project start: 01.01.2012
- Duration: 42 months
- Total budget: 10 Mio. Euro
- Participants:
- Coordinator:

- 21 from 9 EU-countries
- DBFZ

www.sector-project.eu

Densification: Pilot-scale tests (CENER)

Date	Durability	Pine	Date	Durability	Straw
October 2012	88.8		February 2013	84.2	
January 2013	92.3		September 2013	94.3	
June 2013	94.7		October 2013	96.6	
November 2013	95.7		November 2013	97.6	

Two outdoor storage piles built in June 2013

Peaked-topped pile

Production of Solid Sustainable Energy Carrie

rom Biomass by Means of TOR refaction

- Model the formation of piles after it has been delivered
- 4 tonnes

SECTOR

• 2.34 x 2.36 x 1.5 m³

Flat-topped pile

- Model the formation of piles after compaction (though no compaction occurred)
- 3 tonnes
- 2.34 x 2.36 x 1.5 m³

Production of Solid Sustainable Energy Carriers

from Biomass by Means of TOR refaction

SECTOR

Explosivity

Risks with/without torrefaction are comparable

• **Explosivity MIE**: modified Hartmann tube, as the explosion vessel, and following the European Standard EN 13821:2002

00

100

Torrefaction + washing (and drying)

Efficient removal of mineral components

- Pre-washing + dry torrefaction
- Dry torrefaction + post-washing
- TORWASH (wet torrefaction)

Removal fractions for batch washing of hay

TORWASH (Wet torrefaction)

Combines:

- Torrefaction
- Salt removal (>90%)
- Dewatering
- Aim: maximum energy recovery in the form of solid residues
- Product: torrefied fuel pellets or briquettes
- By-product: biogas
- Optional: nutrient separation

Summary conclusions

- Torrefaction technology is ready for commercial market introduction and the basic drivers for torrefaction still hold
- But several factors hamper this introduction, including:
 - European utility sector is facing difficult times co-firing perhaps not the best launching enduser market (also in view of scale) – smaller-scale industrial or district heat better option?
 - It takes time and effort to build end-user confidence
 - Instead of yielding immediately *the* ideal feedstock, torrefied biomass pellets development has to follow a learning curve, just as with white wood pellets
 - Biomass in general is under debate and opinions on biomass use are changing
- However, many constructive and successful efforts (e.g., in the EU-SECTOR project) have been made to remove the barriers for market introduction
- R&D to further improve torrefaction-based biomass upgrading should focus on:
 - Product quality characterisation, optimisation and standardisation (addressing torrefaction and densification)
 - Broadening the feedstock base (including lower-quality biomass (e.g., agroresidues, SRF))
 - Torrefaction as part of co-production schemes for bioenergy carriers and high added value products

Thank you for your attention!

For more information, please contact:

Jaap Kiel

Programme Development Manager Biomass

T +31 88 515 45 90 F +31 88 515 84 88 kiel@ecn.nl P.O. Box 1, 1755 ZG PETTEN The Netherlands www.ecn.nl

ECN

Westerduinweg 3 1755 LE Petten The Netherlands P.O. Box 1 1755 LG Petten The Netherlands

T +31 88 515 4949 F +31 88 515 8338 info@ ecn.nl www.ecn.nl