

Saving on corrosion costs: Testing in true environment using electrochemical characterisation

Saving on corrosion costs

Testing in true environment using electrochemical characterisation

Materials 2015 E.W. Schuring-IWE schuring@ecn.nl

Veldhoven 22 april 2015

Content

- Introduction to the system property Corrosion
- Artificial environment vs True environment
- Applicability of electrochemical characterisation
- Cases

After this presentation you will..

- Understand advantages of electrochemical characterisation
- See it gives you insight in corrosion mechanisms occurring in your system
- Know about possible cost savings related to:
 - Accelerated testing
 - Reduction in time to market
 - Reducing false acceptance or rejection, resulting in:
 - Safety issues
 - Environmental impacts
 - Durability
 - Production losses
 - Maintenance costs

Statements

- €2.2 trillion Global economic cost annually related to corrosion
- Standardised codes are not related to reality
 e.g. A262-14 (Susceptibility to IG attack of aust SS) states:
 - "The presence or absence of intergranular corrosion in this test is NOT necessarily a measure of the performance of the material in other corrosive media/environments."
- Engineers can only design based on general corrosion
- THE corrosion resistant material does not exist.
- THE corrosive environment does not exist (neither does non-corrosive)
- Never ask for a corrosion resistant material only

Corrosion is a system property – Two general conditions

High temperature (dry) gas corrosion

- Diffusion driven
- Accelarates at higher temperatus
- Typical above 150-200°C

Mechanisms:

2Fe +
$$3O_2$$
 → Fe₂O₃
Al + $3O_2$ → Al₂O₃
Algemeen:

$$xMe + yG \rightarrow Me_xG_y$$

Electrochemical / wet corrosion

- Electrochemical reaction:
 Oxidation (anodic) en Reduction (cathodic)
- (Electrical) conductive environment (mostly water)
- Many factors affect corrosion rate
- Typical below approx. <150°C
 Mechanisms:

General subdivision electrochemical corrosion

Uniform corrosion

Predictable

Localised corrosion

Inter-/transgranular corrosion

Pitting

Coating: barrier-properties?

Not predictiable...

Or is it?

Corrosion is a system property – Parameters acting interactive

- Material (metal)
- Microstructure
- Coatings, barriers, joints (brazing / welding/ etc)
- Residual (tensile) stresses

Environment

- Composition, concentrations, alternating environments
- Fluids and gases, moisture, high temperature gas

Conditions

- Temperatures (alternating, level)
- Mechanical load (static and dynamic stress)

Use

- Cleaning
- Stand Still (process installations)
- ...

Standard test vs electrochemical testing

Standardised tests, e.g. Saltspray test, Kesternich, IG-corrosion test:

- Acceptance tests
- Comparing materials
- Testing of all parameters and processes in one, no clear distinction between: initiation, propagation, acceleration/ retardation
- Normalised environments (hardly ever related to actual application)

Electrochemical testing:

- Acceptance tests
- Comparing materials
- Accelareted testing under controlled conditions
- Separate characterisation of; initiation, propagation, acceleration, passivation
- Normalised AND application specific environments

Applications of electrochemical characterisation

 $nMe + 2H_2O + O_2 \rightarrow nMe(OH)_2$

Test		Use	Typical time
ОСР	Open Circuit Potential	First scan on stability	10 - 120 min
PC	Polarisation Curve	Corrosion performance & mechanisms	30 - 200 min
EIS	Electrochemical Impedance Spectroscopy	For coatings	2days-2 weeks
SDM	Stepwise Dissolution Method	Accelerated test, different mechanims	6 – 10 hrs
ENM	Electrochemical Noise Measurement	Material/system comparison	1h – 2 days

Electrochemical corrosion

Metal goes into solution under emiting of electrons

- Electrochemical processes
- Electron current measurable
 - Processes can be traced=
 elektrochemical characterisation
- Enforcing processes
 - Varying potentials
 - Process acceleration
 - Gains insight in both worlds

Electrochemical characterisation - principle

Electrochemical characterisation – PC

- Conditions comparible to practice
 - Elektrolyte: similar to real conditions
 - Varying temperatures
- Insight in actual corrosion mechanisms
 - Simulation of reality
 - Local processes can be predicted
- Extreme sensitive measurement
- Variation in testing
- Accelerated test possibel
- Strong reduced testing times: 30 min 1 week

Case 1: PC, SDM, (ENM) Comparing brazing materials

Case 1: (PC, SDM,) ENM Comparing brazing materials

Case 1: (PC, SDM,) ENM Comparing brazing materials

Conclusions:

- Selected material combination correct for required function and lifetime
- First indication on performance within 2 hours
- Confirmation within 10 hours (per combination)
- Local corrosion processes identified and false acceptance avoided
- Joining technique now accepted by costumer (initial refused due to false acceptance in Salt spray resulting in high costs and credibility loss)

Case 2: Stress corrosion measurement using ENM

Fast comparison of SCC susceptibility of two Al-alloys

Case 2: Stress corrosion measurement using ENM

AA6000 series Conclusions:

Unloaded

- Both not susceptible
- AA7000 passivates faster, but starts more active (precipitates)
- AA6000 series -Loaded

No local corrosion (e.g.pitting)

AA7000 series Loaded

Case 3: SDM (Accelerated test) Measurement principle

Stepwise Dissolution Method (SDM)

- Stap wise raise of potential to $OCP_{0..n}$ by ΔE
- Accelerated corrosion test
- All corrosion processes accelerated individually
- Different corrosion mechanisms seperated
- Results in 6-8 uur

Case 3: SDM (Accelerated test) organic primer on aluminium

Comparible corrosion processes in Salt Spray Test (BLC) en SDM – Corrosion progresses at the substrate-anodised layer interface.

Inbedding mass

Anodised layer

aluminium substrate

Confirmation of corrosion failure mechanism→ validation

Case 3: SDM (Accelerated test) organic primer on aluminium

Stepwise Dissolution Method (SDM) vs. Salt Spray Test (BLC)

Case 3: SDM (Accelerated test) organic primer on aluminium

Resulted in:

- Reduction in testing cost by a factor of 10
- Faster acceptance of production
- Faster production procedure development and optimisation (results in 6 hours)

Case 4: PC & SDM (Accelerated test) **ECN**On Brass, Copper, Nickel, C-steel – water system

Question: What is the effect if a Ni-Cu-Ni coating on a Nb-magnet is left out? In a system with brass, C-steel (Nb-magnet), and nickel in chlorinated tap water at RT

Case 4: PC & SDM (Accelerated test) **ECN**On Brass, Copper, Nickel, C-steel – water system

Conclusion:

- Omitting the Ni(-Cu-Ni) coating results in enhanced corrosion of Nd-Magnet (C-steel)
- Indication for performance within 2 hours

Validation:

Comparing exposition and SDM test

SDM test: Brass vs C-steel Results: 10hrs

Exposition:
Brass vs C-steel
Results: 2 months

Both dezincification → same mechanism

Case 5: EIS and SDM measurement Characterisation of coatings

Problem: Corrosion of coated C-steel component

Question: Qualification of organic coating vs Aluminised substrate and effect

of (mechanical) damage

Undamaged: straight climbing line → electrochemical stable behaviour → relative protective layer

Damaged: exponential climbing line

- → electrochemical active behaviour
- → corrosion

Case 5: EIS and SDM measurement Characterisation of coatings

Damaged organic coating vs aluminised substrate

Low resistance → High electrochemically active → corrosion

Constant over time

High resistance → low electrochemically active → low corrosion

Increases over time → repair of defect

Summary & conclusions

- Electrochemical characterisation:
 - Identifies corrosion processes
 - Reduces risk for false acceptance or rejection
- Validation with respect to corrosion mechanisms required (e.g. metallographic examinations)
- Generally faster insight in corrosion performance
- True system can be evaluated (Environment-Material-Temperatures)

Thanks for your attention

