
 

 

 

Re-use of CO2 and 

intermittent renewables 

W.G. Haije (ECN) 

S. Walspurger (ECN) 

H. Geerlings (TUD) 

 

 

June 2013 

ECN-L--13-050 

 



www.ecn.nl 

Re-use of CO2 and intermittent 

renewables 
Wim Haije ECN/TUD 

Stephane Walspurger ECN 

Hans Geerlings TUD 

CCCC 2013 
05-06-2013 



Current situation 
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Intermittent 
renewables 

Energy storage problem 

Poly 
generation: 
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CO2  capture 

(from large point 

sources) 

Fossil Fuels 
(base load) 



Variability sustainable sources 

• At present, countries like Germany and Spain have > 30 % power from 
intermittent sources, and are no longer able to “store” it in the grid when 
demand is low. 

• IGCC installations cannot run in partial load 

• In general this kind of large scale utilities, if they can be run at lower load, 
need quite some time for ramping up and down. 

• Storage in the form of electricity on this scale is very difficult 

• Storage in the form of hydrogen on this scale is not feasible. 

• The gas grid (if present) has some capacity but H2 concentrations are 
typically 10 % max 

• “Wish storage material”: something like gasoline! 
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High gravimetric & volumetric 

density 
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Variability/Intermittency 
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Storage-only efficiency 
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Why CO2 re-use/solar fuels 

• CO2 is an enabler for hydrogen transport and storage (energy carrier) 

• CO2 is available to answer the intermittent H2 production from renewables 
(CO2 is available continuously from a variety of sources) 

• Chemicals/Fuels from CO2 are a means to sustain a fossil fuel based 
economy (infrastructure, plants etc..) during the transition towards a 
completely renewable energy based economy (using carbon at least twice) 

• CO2 emissions are reduced by saving primary resources and optionally, 
depending on regional configuration, CO2 storage/mineralisation 

– In chemical products (minor) 

– In energy systems (significant) 
 

CO2 re-use potential is about two orders of magnitude less than produced 
by the power production 
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8 



Chemistry and technology 



Chemical products 

• Main chemicals with a ”green colour” are polymers (40-50w% CO2) 
– Polycarbonates and poly(ester-co-carbonate)s (DSM) 

– Polypropylene carbonate (PPC) and CO2 polyols (BASF, Novomer) 

– Polyethylene carbonate (PEC) (Bayer) 

• Bio Based 
– Food for bacteria and microalgea (final product Diesel) 

• Artificial leaves 
– Formic acid (Panasonic) 

• Inorganics 
– Solvay process (alkali carbonates) 

– Cement/concrete 

Although the polymer market is huge, these activities will not have 
significant impact on the CO2 levels in the atmosphere. 
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Coupling of H2 to CO2 
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Intermittency 
versus base load 

of power 
production 

H2 
storage 

CO2 sequestration 

Gas 
quality 

• Gas from high CO2 content gas fields 
 Up to 60% CO2 

• Digester gas is produced at small scale 
by manure digestion at farms.  
 Digester gas consists of 50 to 75% 

methane and 25 to 50% CO2 
• Producer gas from biomass gasification 

 Biomass has higher carbon 
content than methane, which 
means that either CO2 has to be 
removed from the gas or 
hydrogen has to be added. 

But also 
• Pure CO2 from capture plants, industrial 

point sources etc..  



How nature does it 
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Theoretical 40%, 
Practical 15%, 
from light to H2 

0.2-1.0% 



What we do with it 
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Methane 



Can we do the same trick? 
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Yes we can!............. 
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Reaction ΔH 

kJ/mol 

CO2 + 4H2 ↔ CH4 + 2H2O -167.0 methanation 

CO + 3H2 ↔ CH4 + H2O -206.0 methanation 

CO2 + H2 ↔ CO + H2O +41.3 reverse water gas shift reaction 

nCO + 2nH2 → −(CH2)n− + nH2O -126.0 Fischer-Tropsch 

CO2 +3H2 ↔ H2O + CH3OH -49.6 methanol synthesis 

CO + 2H2 ↔ CH3OH -90.8 methanol synthesis 

………. because CO2 is always in equilibrium with other components 
and just needs a little help to go beyond that equilibrium! 



Fundamentals 
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Water gas shift 

CO + H2O ↔ CO2 + H2  0 = -41 KJ/mol  

Conversion limited by equilibrium: 

Keq =( PH2 PCO2 )/( PCO PH2O) 
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How to produce pure H2 and CO2? 
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CO + H2O  H2 

CO2 

CO2 
CO2 

CO2 

CO2 

CO2 

sorbent sorbent catalyst 

CO2 

Le Chatelier’s Principle 1 cm 

CO3
2-

 H2O 

Mg(OH)6 -octahedron 

Al(OH)6 -
octahedron 

Promoted with K2CO3 

Mg6Al2(OH)16CO3.4H2O 

Hydrotalcite (layered clay) 

Fe-Cr 

Sorption enhanced water gas shift (SEWGS) 

CO + H2O ↔ CO2 + H2 



SEWGS the process 

High temperature (400oC), high pressure (35 bar) production of H2 from Syngas. 
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CO2 H2 
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CO 

H2 
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H2O H2O 

CO2 

Water-Gas Shift:  CO + H2O  CO2 + H2 

Carbonate Formation  

 Decarbonisation  

Animation: Paul Cobden, ECN 



SEWGS and what you can learn 

from it………. 
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100% CO2 

100% H2 

+ 

Thermodynamics @ 400oC: 
34% conversion 

Two patent applications 
• Sorbent 
• Process for CO2/H2S separation 



Consequently: 

• The reverse of the previous, the reverse sorption enhanced WGS, should 
work as well: 

 

 

• Idea: take out the water, yielding full conversion to CO, and with more H2 
any syngas composition can be tuned!! 
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CO2 + H2↔ CO + H2O  



Wonderful….. 

21 

 

   CO2 + H2 ↔ H2O + CO 
 

 



100% conversion!! 
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Experimental 

Thermodynamics 



Artist impression 
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Haije & Geerlings dx.doi.org/10.1021/es203160k 
|Environ. Sci. Technol. 



Efficiency estimate 

• PV State of the Art :19%.  

• High pressure electrolysis State of the Art: 85% 

 ►Solar hydrogen: 16%.  

• Including a mismatch between photo-voltage and electrolysis potential : this 
number reduces to 13%.  

  

• SERWGS: 90% (The only new technology in the process!) 

•  Fischer-Tropsch : 70% 

 ►Overall efficiency: Solar to fuels : 8.2% 

• Including Carbon Capture penalty of 150 kJ/mol of CO2: 7.7% 

 

• Alternative routes generally 1-2 orders of magnitude lower!! 
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Economic viability 



Simple cost estimation 

• Equation 

 

 

 

 

• Capital Cost: 
– Investment Cost Electrolyzer 700US$/kW; CRF 20%; ISBL=2OSBL 

• H2 production: 
– Conversion power to H2 : 62% efficiency, at 100-30% load. 

• Power Cost: 
– 0 to 5 ctUS/kWh 

 

     

 

   

H2 cost (Eur/kg)     = Power Cost 

H2 produced 

Capital Cost    + 



Hydrogen costs from water electrolysis 

• At high availability, H2 cost mostly 
sensitive to power costs. 

 

• At availability < 4000h cost 
increase due to capital intensive 
electrolyzer (low depreciation) 

 

• Solar capacity factor around 10-
15% 

 

• Wind capacity factor 20-30% 

 

• Still way above H2 from fossil fuels 
(1.8US$/kg, IEA forecast for 2050) 

 

 



Real case (Wind generation) 

• Raw data sorted to determine electrolyzer’s size 

• Hourly Fluctuation neglected in first approach 

 
• Source data : http://www.ieso.ca/imoweb/marketdata/windpower.asp (Ontario, Canada) 

 

     

 

   

http://www.ieso.ca/imoweb/marketdata/windpower.asp
http://www.ieso.ca/imoweb/marketdata/windpower.asp
http://www.ieso.ca/imoweb/marketdata/windpower.asp


Real case (Hydrogen from Wind) 

• Assumptions: 
– Electrolyzer capacity = 75% installed wind 

capacity 

– Electrolyzer operational window at 62% 
efficiency: 100%-30% load. 

– Surplus sold as power to the grid 

– Downtime power sold to the grid  

• Hydrogen Availability: 4440 hours/y 

• Average power used: 831 MW  

– Equal to 64% of the electrolyzer capacity 
 

 

• New equation: 
 

 

 

  

 

   

 

 

 

 

    
  

H2 cost (Eur/kg)     = Power Cost 

H2 produced * 0.64 

Capital Cost       + 
-   Power production Revenues 



Real case (Hydrogen cost) 

• Electrolyzer operation extended  
• From 1700-2700h/y-1 to 4000-5000h 

 

• Electrolyzer average operation at 64% 
part-load (100-30%) 

• How about true efficiency? 

 

• Number of start-up/shut down high 
• 96 interruptions / year (Power production 

below electrolyzer 30% capacity) 

 

• Improvements: 
• Mixed renewable sources 

(wind+solar+hydro)? 

• Flexible modular electrolyzers 

• Higher Efficiency vs. load 

 

    

 
 

 

 

  

 

   

 

 

 

 

    
  



Real case (SNG cost) 

• Assumptions: 
– Electrolyzer capacity = 75% installed wind capacity 

– Electrolyzer operational window at 62% efficiency: 
100%-30% load. 

– Surplus sold as power to the grid 

– Downtime power sold to the grid  

– Power to SNG Availability: 4440 hours/y 

– Average power used: 831 MW (64% electrolyzer 
capacity) 

• SNG plant: 

• 95% efficiency 

• Investment costs: 40US$/kWe electrolyzer 
installed 

• SNG cost: from 45-80 US$/GJ, 10 times NG prices 

 

• Complementary questions: 
– SNG train response to part-load and shut down 

 

 

 

 

 

 

  

 

   

 

 

 

 

    
  



Real case (MeOH cost) 

• Assumptions: 
– Electrolyzer capacity = 75% installed wind capacity 

– Electrolyzer operational window at 62% efficiency: 100%-
30% load. 

– Surplus sold as power to the grid 

– Downtime power sold to the grid  

– Power to SNG Availability: 4440 hours/y 

– Average power used: 831 MW (64% electrolyzer 
capacity) 

• MeOH plant: 

• 95% efficiency 

• Investment costs: 60US$/kWe electrolyzer installed 

• MeOH cost: from 800-1500 US$/t, 2-3 times MeOH 
prices from NG 

• Complementary questions: 

– MeOH conversion train response to part-load and 
shut down 

 

 

 

 

 

 

  

 

   

 

 

 

 

      



Real case (GtL cost) 

• Assumptions: 
– Electrolyzer capacity = 75% installed wind capacity 

– Electrolyzer operational window at 62% efficiency: 100%-
30% load. 

– Surplus sold as power to the grid 

– Downtime power sold to the grid  

– Power to SNG Availability: 4440 hours/y 

– Average power used: 831 MW (64% electrolyzer capacity) 

• GtL plant: 

• 95% efficiency 

• Investment costs: 60US$/kWe electrolyzer installed 
(150000US$/tpd installed, 40% of mini GtL plant capital 
costs) 

• GtL cost : from 300-550 US$/barrel, 3-5 times oil prices  

• Complementary questions: 

– GtL conversion train response to part-load and shut 
down 

 

  

 

   

 

 

 

 

      



Wrap-up 



Take home messages 

• Hydrogen will not prevail as sole energy carrier besides electricity 

 

• CO2 can be pushed into reaction with a.o. hydrogen (separation 
enhancement) 

 

• Synthetic fuels are a logical route in intermittent demand/supply energy 
systems on large scale provided they can cope with intermittency 

 

• There are many routes to chemicals and fuels 

 

• There are clearly options on industrial scale in the near future 

 

• What you don’t take out of the earth’s crust will not burn 
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Developments in the 

Netherlands 

• Program DIFFER (Dutch institute for fundamental energy research) 
– Four themes 

– Photons related 

– Out of equilibrium processes (plasmas) 

– Bio –mimetic photo systems 

– Downstream chemical processing 

 

 

• Follow-up of CATO2 
– Capture and re-use and storage 

– Main message CO2 is not waste but feedstock 

– Small impact: chemicals in industry 

– Big impact: energy storage related to intermittent energy sources 

36 



Ready to beat intermittency! 
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Thank you for your attention 

This research was performed in close cooperation with our Shell partners: 

 Mary Bastian, Donald Reinalda and Joost Smits. 
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