

Seaweed Biorefinery in the Netherlands

Seaweed Biorefinery in the Netherlands

W.J.J. Huijgen, A.M. López Contreras* & J.W. van Hal

* Wageningen UR Food & Biobased Research

Copenhagen, Denmark 5th June 2013

Contents

- ECN
- Introduction on (biorefining of) seaweeds
- Example: sugars from *Palmaria palmata*
 - Palmaria palmata
 - Saccharification of Palmaria
 - Fermentation of *Palmaria* hydrolysates
- Summary and Outlook

Energy research Centre of the Netherlands (ECN)

• What do we do:

 ECN develops market driven technology and know-how to enable a transition to sustainable energy society

• Business units:

- Biomass & energy efficiency
- Solar energy
- Wind energy
- Policy studies
- Environment & energy engineering

ECN

- Independent research institute
- ~600 employees
- Locations:
 - Petten (HQ)
 - Amsterdam
 - Eindhoven
 - Brussels
 - Beijing

(Biorefining of) Seaweeds

Have you had your seaweed today?

Food (sushi)

• Thickener (agar)

5

Why seaweeds for biorefining?

- Large potential availability
 - Earth's surface ~70% water.
 - Fastest growing biomass at the latitude of The Netherlands.
- No competition for land use
- Opportunity for simultaneous food and chemicals production
- Chemical composition
 - Comprised of (specialty) carbohydrates, proteins and ash.
 - → Source for glutamic acid, aspartic acid, xylose, rhamnose, mannitol, uronic acids (alginate), fucoidan, ...
 - Complementary to micro-algae and lignocellulose.
- Various potential applications of biorefinery products

Dutch Seaweed Biorefinery Program

7

Seaweeds native to the North Sea

Saccharina latissima

Laminaria digitata

Alaria esculenta

Laminaria hyperborea

Palmaria palmata

EU BC&E 2013

Example: Palmaria palmata

Palmaria palmata

- Red seaweed.
- Rich in carbohydrates xylose, galactose and glucose.
- Shape: seaweed plant with holdfast (stem) and blades.
- Size: decimeters.

Xylan (1,3 and 1,4 linkage)

	Arabinose	Fucose	Galactose	Glucose	Xylose	Glycerol	Ash	Sum
Composition specific batch (dw%)	0.2	0.1	11.5	10.7	30.2	6.9	12.8	72.2

EU BC&E 2013

Palmaria Biorefinery Scheme

Hydrolysis of freeze-dried *Palmaria*

- Tests with freeze-dried Palmaria.
- Various acids and conditions tested.
- Hydrolysis of Palmaria to (oligomeric) xylose proven.
- Xylose concentration is dependent on the [H]⁺, not on type of acid.
- Selected conditions: 0.1M acetic acid, 100 °C, 2hrs.
- → Scale up using fresh seaweeds.

Effect of temperature, acetic acid, 0.1M

Hydrolysis of fresh *Palmaria*

- Palmaria harvested in Ireland in July 2012 and processed within one week (no mechanical treatment).
- Input (20L autoclave):
 - 5 kg Palmaria (~1 kg d.w.)
 - 1:1 HOAc solution.
- Red seaweed turned into green 'soup'.
 - Solids recovery 51.6% dw.
 - Yield xylose ~45% & galactose ~60%.
 - Process liquor used for ABE fermentation.
- Future work:
 - Improvement separation solid residue liquor (potential increase Xyl yield to ~70% & Gal to ~90%).

Fermentation Hydrolysates to ABE

- Microorganism: Clostridium beijerinckii
- Fermentation conditions:
 - Anaerobic, 37°C, 50mL serum flasks.

• Cultures:

- − Palmaria palmata extract (~0.1 M HOAc).
- Palmaria extract pre-incubated with enzyme
 GC220 to hydrolyze oligomers (50°C, 24 h).

Monosugars and products concentrations (g/L)

	Extract	Extract + GC220		
t=0 h				
Glucose	0	2.7		
Xylose	0.8	8.3		
Galactose	0.6	0.4		
Acetic Acid	4.0	3.3		
t=250 h				
Glucose	0.0	0.0		
Xylose	12.0	1.6		
Galactose	0.0	0.0		
Acetic Acid	1.0	1.7		
ABE	0.0	3.8		
Butyric Acid	6.9	3.0		

ABE Fermentation

Palmaria palmata extract

14

100

50

150

Time (h)

200

250

300

Hydrolysed Palmaria palmata extract

ABE fermentation of Palmaria palmata extract by C. beijerinckii.

Summary and Outlook

Summary

Goal biorefinery project:

Proof-of-Principle biorefining of fresh seaweeds native to the North Sea.

Example presented:

- Successful saccharification of Palmaria palmata.
- Monomeric sugar content extracts tested too low to support ABE production.
- After post-hydrolysis, extracts were fermentable to ABE.

• Other processes being developed:

- Mannitol production from brown seaweeds.
- Rhamnose production from green seaweeds.

Outlook:

- Pre-extraction of high-value components to improve process economy.
- Utilization of residual streams (digestion, feed, mineral use, ...).
- Reactor: seaweed-optimized reactor concept for biorefining.

Thank you for your attention

More information:

vanhal@ecn.nl

http://seaweed.biorefinery.nl

This work has been funded by Agentschap NL in the context of the Dutch EOS-LT 'Seaweed Biorefinery' project.

F	C	N
_	•	

Westerduinweg 3 P.O. Box 1

1755 LE Petten 1755 ZG Petten
The Netherlands The Netherlands

T +31 224 56 49 49 info@ecn.nl F +31 224 56 44 80 www.ecn.nl

Acknowledgements:

Declan Hanniffy

Bwee Houweling-Tan

Hector Capella Monsonis

Arjan Smit

Ron van der Laan

