

CO oxidation and CO₂ reduction on carbon supported PtWO₃ catalyst

N.P. Lebedeva V. Rosca G.J.M. Janssen

Presented at the 7th Spring Meeting of ISE, 22-25 March 2009, Szczyrk, Poland

ECN-L--09-179

December 2009

Energy research Centre of the Netherlands

CO oxidation and CO₂ reduction on carbon supported PtWO₃ catalyst

N.P. Lebedeva, V. Rosca, G.J.M. Janssen

Energy research Centre of the Netherlands (ECN), Petten, The Netherlands

7th Spring Meeting of ISE, Szczyrk 2009, Poland

Motivation

- PEM fuel cells are attractive power source
- $H_2 O_2$ as fuel, Pt as a catalyst

however

- H₂ often contains traces of CO
- reformate contains CO and up to 25% of CO₂

• CO₂ is often *not inert* then!

Case study: PtWO₃/C

Why PtWO₃/C?

• PtWO₃/C is a CO tolerant catalyst

• CO tolerance is through bifunctional mechanism

- Some report good performance in reformate-fed PEMFC
- Stability WO₃ is insoluble in acids (PEMFC)
- Not as widely implemented as PtRu/C

Catalyst preparation

Reductive co-precipitation

Catalyst characterisation

Pt is present as Pt metal W as amorphous WO₃ no alloying Pt-W found

surface slightly enriched with WO_3 Pt_{0.70}W_{0.30} (XPS) vs. Pt_{0.77}W_{0.23} (EDX)

Catalyst characterisation

Catalyst characterisation

A.H. Wonders, et al. J. Appl. Electrochem. 36 (2006) 1215

CO adlayer oxidation

Oxidation of a saturated adlayer of CO starts at low overpotentials, ~ 0.25 V

Small fraction of the adlayer, ca. 2 %, is being removed

The major part oxidizes at potentials typical for Pt, ca. 0.7 V

On-line MS 0.5 M H₂SO₄; 2mV/s

saturated CO adlayer

T. Nagel et al, J. Solid State Electrochem., 7 (2003) 614.

T. Nagel et al, J. Solid State Electrochem., 7 (2003) 614.

Energy research Centre of the Netherlands

E / V vs RHE

Mechanism of the CO oxidation

Where does "O" come from – "lattice" or H_2O – and what is the role of $H_xWO_3 \cdot yH_2O$?

Energy research Centre of the Netherlands

CO₂ reduction

CO₂ reduction

Rate of the adsorbate formation is much lower on $PtWO_3/C$ than on Pt/C:

- lower Hupd concentration

however

Eventually full coverage will be reached @ RT

 $CO_2 + 2H_{ads} \rightarrow$ $CO + H_2O$

Conclusions

- $PtWO_3/C$ is highly active in the oxidation of CO: adlayer begins to oxidize at 0.25 V and dissolved CO at 0.12 V vs. RHE
- H_xWO_3 is the active component & oxygen donor; formation of the bronze is slow in the PtWO₃/C catalyst
- In the presence of CO, the bronze formation (via H spill-over from Pt to WO₃) is inhibited;
 ⇒ (reversible) catalyst deactivation.
- PtWO₃/C catalyst reduces CO₂ to CO at much lower rate than Pt/C. Still full coverage is expected at prolonged exposure to CO₂ at RT.
- $PtWO_3/C$ has a limited operating window (ca. 0.10 V to ca. 0.45 V). In case of high overpotential on the anode (start-up, fuel starvation etc.) and/or peak of high CO concentration possible death of the catalyst.

General recommendations:

- WO₃ phase as crystalline as possible for quick recharging; well dispersed with Pt
- Drying induces ageing \Rightarrow slowing down of recharging \Rightarrow lower catalyst activity

Acknowledgement

Marijke Roos, Energy Research Centre of the Netherlands (ECN), for EDX measurements Vera Smit-Groen, Nuclear Research and Consultancy Group (NRG), for XRD measurements Onne Wouters, Nuclear Research and Consultancy Group (NRG), for TEM imaging Ad Wonders, Eindhoven University of Technology (TUE), for assistance with on-line MS Tiny Verhoeven, Eindhoven University of Technology (TUE), for XPS measurements