Catalyst structure – performance trends for sibunit carbon based cathodes for PEMFC

A.S. Booij
M. Aalberts
N.P. Lebedeva
I.N. Voropaev
P.A. Simonov
A.V. Romanenko
V.I. Bukhtiyarov

Presented at the 212th Electrochemistry Society Meeting, October 2009, Vienna, Austria
CATALYST STRUCTURE – PERFORMANCE TRENDS FOR SIBUNIT CARBON BASED CATHODES FOR PEMFC

A. S. Booij, M. Aalberts, N. P. Lebedeva,
Energy research Centre of the Netherlands (ECN), Petten, NL
I. N. Voropaev, P. A. Simonov, A.V. Romanenko, and V. I. Bukhtiyarov
Boreskov Institute of Catalysis (BIC), Novosibirsk, RU
PEM Fuel Cell – challenges to commercialization

- Durability
- Cost
- Performance (efficiency)
PEM Fuel Cell – cost

Fuel Cell system costs decreased to $73/kW but need further reductions

80 kW, direct hydrogen, automotive fuel cell system cost breakdown*

* Based on DTI DFMA 2008 cost analysis projected to volume of 500,000 units per year, using Pt cost of $1100 per troy ounce

Nancy L.. Garland, DoE, '08 Electric Drive Transportation Association Conference & Exposition, 2-4 December 2008, Washington DC, USA
PEM Fuel Cell – how to reduce the catalyst cost?

- **Use less Pt and improve its utilization**

 catalyst - porous structure
 electrode - catalytic layer structure

- **Alloy Pt with transition metals: Pt M**

- **Non-Pt catalysts**

 Sluggish oxygen reduction reaction (ORR) causes major performance losses

 Focus on the **CATHODE**
Sibunit

- **Catalyst porous structure**
 - Sibunit carbon
 - Boreskov Institute of Catalysis (BIC) in Novosibirsk, Russia

EU FP6 project “IPHE-GENIE”
Carbons of Sibunit family

Sibunit BIC, Novosibirsk
IHP, Omsk

Synthesis and formation of Sibunit texture

A – condensation (deposition of pyrocarbon onto carbon black particles)

B, C, D, E – activation (oxidative gasification of the PC/CB composite)

Texture of the Sibunit support materials

Porous carbon of the Sibunit family used as the catalyst support: pore size distributions calculated from the desorption branch of the nitrogen adsorption isotherm in accordance with the *BJH* model.

- **BET surface area**: 450 - 550 m²/g
- **Total pore volume**: 0.6 – 1.4 cm³/g

Porous carbon of the Sibunit family used as the catalyst support: pore size distributions calculated from the desorption branch of the nitrogen adsorption isotherm in accordance with the *BJH* model.
40wt% Pt/Sibunit 1562P catalyst

TEM

$D_{SV}=2.86 \text{ nm}$

XRD

$D_v=3.3 \text{ nm}$

CO chemisorption

$D_S=3.37 \text{ nm}$
MEA preparation (typical)

INK

- Pt/Carbon
- 1,2-propanediol
- Stabiliser
- Nafion (N:C ratio varied)

ELECTRODE

- screen-printed on GDL
- thin layer of ionomer (Nafion)

MEA

- 5-layer structure
- membrane
- hot-pressed

Patented:
US2004086773
WO0171840
US7186665
EP1285475
MEA testing protocol

Start-up
- at 500 mA/cm2 for 16-17 hours
- $T_{\text{cell}} = T_{\text{humidifier}} = 65 ^\circ \text{C}$, 1 bar(a), $\lambda_{\text{air}} = 2$, $\lambda_{\text{H}2} = 1.5$

Polarization curves
- in air and in oxygen
- OCV - 2.0 A/cm2 (2.5 A/cm2) - 0.5 A/cm2 - OCV
- step time - 5 minutes
- $T_{\text{cell}} = T_{\text{humidifier}} = 65 ^\circ \text{C}$, 1 bar(a), $\lambda_{\text{air}} = 2$, $\lambda_{\text{H}2} = 1.5$

Extra characterisation tools
- Electrochemical Impedance Spectroscopy (EIS)
- electrical + proton resistance
- Cyclic voltammetry (CV)
- active surface area of Pt, Pt utilisation
- Hydrogen cross-over
Polarisation measurements

65°C, 100% RH, 1 bar(a)

$\lambda_{H2} = 1.5, \lambda_{air, O2} = 2.0$

step time 5 min

40wt% Pt/Sibunit 1562P
H2315 C2
FuMAPEM 950
Fumion ionomer

$m_{Pt \text{ cathode}} = 0.26 \text{ mg/cm}^2$

-air
-oxygen
Catalyst kinetic activity

Kinetic activity ORR @ 0.9 V

Mass activity:

- 40wt%Pt/Sibunit 1562P
 - 63 ± 5 A/g
- 40wt% Pt/Vulcan XC72R (Hispec 4000, JM)
 - 30 ± 8 A/g

Specific activity:

- 40wt%Pt/Sibunit 1562P
 - 104 ± 10 µA/cm²
- 40wt% Pt/Vulcan XC72R (Hispec 4000, JM)
 - 114 ± 10 µA/cm²

Pt utilisation:

- 40wt% Pt/Sibunit 1562P
 - 60-80%
- 40wt% Pt/Vulcan XC 72R (Hispec 4000, JM)
 - 60-80%

Pore structure effect – Pt utilisation

Pt utilisation = ECSA / SA

ECSA – from in situ CV measurements
SA – gas-phase CO chemisorption

Pores with \(d > 10 \text{ nm} \) are well accessible for the ionomer

Small mesopores \(3-4 \text{ nm} \) → much higher Pt utilisation → Sib 619P > Sib 1562P > Sib 29PVR
Pore structure effect – Pt utilisation

Ordered mesoporous carbon CMK-3

Pore diameter 3.65 nm

Pt utilisation ≈ 80%

Small mesopores:

3-4 nm – unaccessible for the ionomer tend to flood

water acts as a proton conductor

Transport processes at the cathode

- **Transport of H^+, O_2, and H_2O:**
 - efficient ionomer pathways
 - thin electrode
 - thin ionomer layer
 - sufficiently large pores
 - hydrophobic / hydrophilic pathways

- **Electron transport:**
 - conducting carbon network
Pore structure effect – H^+ transport in cathode layer

<table>
<thead>
<tr>
<th>Composition</th>
<th>Resistance Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 wt% Pt/Sibunit 619P</td>
<td>0.100 - 0.170 Ohm cm2</td>
</tr>
<tr>
<td>40 wt% Pt/Sibunit 1562P</td>
<td>0.100 - 0.140 Ohm cm2</td>
</tr>
<tr>
<td>40 wt% Pt/Vulcan XC 72R (Hispec 4000, JM)</td>
<td>0.100 - 0.140 Ohm cm2</td>
</tr>
<tr>
<td>40 wt% Pt/Sibunit 29PVR</td>
<td>0.090 - 0.130 Ohm cm2</td>
</tr>
</tbody>
</table>

No pronounced effect of the support pore structure on H^+ transport in the catalytic layer
Pore structure effect – O_2 and water transport

Large pores with $d > 10$ nm are efficient in O_2 transport and water removal
Small mesopores – 3-4 nm – tend to flood, impeding O_2 transport

H2315 C2 GDL
Rp ~ 0.10-0.13 Ohm cm2
Pore structure effect – \(O_2\) and water transport

- **Transport of \(O_2\) and \(H_2O\):**

 Knudsen diffusion in the pores with diameter < ca. 100 nm @ \(p = 1\) bar(a)

 \[D_k = 97 \cdot r \sqrt{T/M}\]

 Capillary condensation @ low \(P/P_0\) in small mesopores

\[O_2\] \[H_2O\]

Pore structure of the catalytic layer - important!
Corrosion stability of Sibunit carbons

Voltage hold at 1.2 V vs. RHE, 80°C in 1M H$_2$SO$_4$ for 24 hrs

\[\text{C} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + 4\text{H}^+ + 4\text{e}^- \]

\[\text{C} + \text{H}_2\text{O} \rightarrow \text{surface groups} \]

Corrosion stability of Sibunit carbons

Sibunit carbons are more corrosion resistant due to a higher degree of graphitisation of the surface

Conclusions

• Pore structure of the carbon support was shown to significantly influence the performance of the Pt/C cathode catalysts:
 – **Pt utilisation** increases when small mesopores, 3-4 nm, are present in the catalyst. Pores with the diameter smaller than ca. 10 nm are not accessible for the ionomer. Water plays an important role as a proton conductor.
 – **Transport properties** – O$_2$ diffusion and H$_2$O removal – are improved for the catalysts having large mesopores, > 10 nm, and macropores. Flooding through capillary condensation is also diminished.

• Sibunit carbons exhibit higher corrosion resistance compared to the conventional carbon blacks due to a higher graphitisation degree of the surface.

• Sibunit carbons offer a unique possibility to tune porous structure without changing other textural parameters (for example, microstructure at the surface), therefore, enabling fundamental studies of the structure – performance relationship.
Acknowledgement

Marijke Roos (ECN, Petten) – SEM imaging
Dr. Onne Wouters (NRG, Petten), Paul van den IJsert (NRG, Petten) – TEM imaging
Vera Smit-Groen (NRG, Petten) – XRD analysis

Dr. Bernd Bauer (FuMa-Tech GmbH, St.Ingbert, Germany) – for ionomer and membrane samples and useful discussions

Dr. Volker Banhardt (Freudenberg FCCT KG, Germany) - for samples of H2315 C2 GDL material

Financial support provided by EU-FP6 project “IPHE-GENIE”, contract #039016