

Micrometeorological observations of CH₄ and N₂O at a managed fen meadow in the Netherlands

Petra Kroon^{1,2} Arjan Hensen¹ Harm Jonker²

¹ECN, Netherlands ²TU Delft, Netherlands

Presented at the Fifth International Symposium on Non-CO2 Greenhouse Gases (NCGG-5) Science, Reduction Policy and Implementation, June 30 - July 3, 2009, Wageningen, The Netherlands

ECN-L--09-093 July 2009

Energy research Centre of the Netherlands

Micrometeorological observations of CH_4 and N_2O at a managed fen meadow in the Netherlands

Petra Kroon^{1,2}, Arjan Hensen¹ & Harm Jonker² 1. ECN, Netherlands; 2. TU Delft, Netherlands

Outline

- Background
- Research question
- Systematic errors and uncertainties
- Accuracy of annual CH₄ and N₂O balance
- Conclusions

Background: GHG emissions from a managed fen meadow

Background: Lack of accurate annual sums

Due to temporal variation

1200 Int all (d) Int weekly 900 $Flux\ N_2O\ [ngN\ m^{-2}s^{-1}]$ 600 Cumulative emission Int all: 3.09 kgN ha⁻¹ Int weekly: 5.47 kgN ha-1 300 -300 14/05/06 23/05/06 01/06/06 10/06/06 Date

Managed site in Reeuwijk in the Netherlands

(Kroon et al., 2008)

Uncertainty in N_2O annual estimates derived by chamber may be as high as 50% (Flechard et al., 2007)

Background: Lack of accurate annual sums

Due to spatial variation

Top view Reeuwijk site in the Netherlands

(Based on Schrier-Uijl et al., 2008)

Background: Measurement techniques

Chamber

Eddy Covariance

$$F_{wc} = \frac{1}{T_a} \int w'(t) C'(t) dt$$

Background: Measurement techniques

Chamber

Eddy Covariance

Can EC measurements contribute to a decrease of the uncertainty in annual estimates of CH₄ and N₂O?

Eddy covariance flux theory

After Reynolds decomposition, integrating over the height and assuming:

- Horizontal homogeneity
- Flat terrain
- Negligible mean vertical wind speed

$$F_{wc} = \int_{0}^{h} \frac{\partial \overline{c}}{\partial t} dz + \underbrace{\overline{w'c'}|_{z=h}}_{\text{EC}_{wc}}$$

Errors and uncertainties in EC flux measurements

Sonic anemometer

Wind measurements

Tube connected to QCL

CH₄ measurements

N₂O measurements

$$EC_{wc}^{\text{meas}} = \overline{w'c'}\Big|_{z=h}$$

$$EC_{wc} = \overline{w'c'}\Big|_{z=h}$$

Systematic errors

- Calibrations
- Alignment sonic anemometer
- Low frequency response losses
- High frequency response losses
- Density fluctuations

(Kroon et al., submitted)

Rotation algorithm on u, v and w

$$EC_{wc} = \chi_{cal} \chi_{low} \chi_{high} EC_{wc}^{meas} + \chi_{cal} \chi_{Webb}$$

Uncertainties

- Calibrations
- Alignment sonic anemometer
- Low frequency response losses
- High frequency response losses
- Density fluctuations

Other random uncertainties:

- Drift in instruments
- Precision of instruments
- One point sampling

(Kroon et al., submitted)

90% of 30 min EC flux uncertainty is caused by one point uncertainty!

$$u_{\text{op}} = \frac{2}{\sqrt{M}} \sigma_{w'c'} = \sqrt{\frac{20z}{TU}} \sqrt{\overline{(w'c')^2} - \overline{(w'c')^2}}$$

Uncertainties

CH₄ uncertainty

	Low fluxes	Medium fluxes	High fluxes
Selection range [ngC m ⁻² s ⁻¹]	100 - 300	300 - 500	700 - 900
Uncertainty 30 min [%]	150 (±100)	90 (±50)	70 (±40)
Uncertainty daily [%]	30 (±20)	20 (±10)	10 (±10)
Uncertainty monthly [%]	10 (±0)	10 (±0)	10 (±0)

N₂O uncertainty

	Low fluxes	Medium fluxes	High fluxes
Selection range [ngN m ⁻² s ⁻¹]	15 - 35	40 - 60	90 - 110
Uncertainty 30 min [%]	340 (±210)	210 (±120)	140 (±80)
Uncertainty daily [%]	50 (±30)	30 (±20)	20 (±10)
Uncertainty monthly [%]	10 (±0)	10 (±0)	10 (±0)

(Kroon et al., submitted)

Thus, EC flux measurements can possibly contribute to more accurate annual estimates of CH₄ and N₂O!!

29-6-2009

Annual sums

Average annual emissions over 2006 – 2008

	Static chamber	Eddy Covariance
CH ₄ [kg CH ₄ ha ⁻¹]	170 (±32%)	165 (±13%)
N ₂ O [kg N ₂ O ha ⁻¹]	NA	18 (±10%)

(Kroon et al., submitted; Schrier-Uijl et al., submitted)

GHG emissions from a managed fen meadow

Conclusions

- The annual emission estimates of peat areas are very uncertain
- Corrections should be applied for the systematic errors in EC flux measurements
- There are many uncertainties in EC flux measurements
- The uncertainty in a 30 min EC flux measurement can be even larger than 100%
- Assuming 100% data coverage, the uncertainty of a monthly EC flux average is smaller than 10%
- The total field emission is estimated at 15 Mg ha⁻² yr⁻¹ CO_2 -equivalents (41% due to N_2O), however the emission will increase by more than 250% when biomass removal and farm based emissions are included

Thanks to ...

Reeuwijk-team

BSIK-team

Cabauw-team

LDA-team

- Arjan Hensen (ECN)
- Hans van 't Veen (ECN)
- Alex Vermeulen (ECN)
- Pim van den Bulk (ECN)
- Piet Jongejan (ECN)
- Rob Rodink (ECN/TU)
- Harm Jonker (TU)
- Erwin de Beus (TU)
- Adriaan Schuitmaker (TU)
- Huug Ouwersloot (TU)
- Mark Tummers (TU)
- Fred Bosveld (KNMI)
- Arina Schrier (WUR)
- Elmar Veenendaal (WUR)
- Dimmie Hendriks (VU)
- Mark Zahniser (Aerodyne)
-

Energy research Centre of the Netherlands

Micrometeorological observations of CH_4 and N_2O at a managed fen meadow in the Netherlands

Petra Kroon^{1,2}, Arjan Hensen¹ & Harm Jonker² 1. ECN, Netherlands; 2. TU Delft, Netherlands

