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The performance of the trained artificial neural network for the load case power production & 
free-stream conditions is shown in Figure 3.4. 
 

 
Figure 4.1 Performance of the neural network trained for estimating the blade root  
  flapwise bending load indicator for a turbine in power production under free-
  stream conditions. 
 
The results presented in the figure indicate that a good relation exists between the selected 
SCADA parameters (see Table 4.1) and the load indicator for the tower bottom for-aft bending 
moment (see equation 1). This is confirmed by the value of the coefficient of determination (R2 
= 0.95). When studying the green data points, which represent the ‘test’ dataset (which has had 
no influence on the network’s training), it can be seen that here also a good performance is 
achieved. This is an important indicator for the generalisability of the neural network (its ability 
to make accurate predictions when fed with new data). Therefore it can be expected that the 
trained neural network will also make accurate predictions for the other turbines in the same 
wind farm for this load indicator. 
 
The results (number of data points and coefficient of determination) for all five load cases are 
summarised in Table 4.2. 
   
Table 4.2  Number of data points and coefficient of determination for the established 
  relations between SCADA signals and the load indicator for tower for-aft 
  bending. 

Load case Data points R2 
1.1 16174 0.9507 
1.2 3266 0.9439 
1.3 1669 0.9593 
2.1 12987 0.6812 
3.1 1193 0.9530 
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The table indicates that for all load cases but parked/idling a good accuracy (of around R2 = 
0.95) is achieved. This might be unexpected, since no wave-describing parameters are included 
as independent variables in the artificial neural network (see Table 4.1). However, wave height 
and direction are, in general, strongly correlated with wind speed and direction. As a result the 
fluctuations in the tower bottom for-aft bending for an offshore turbine can be accurately esti-
mated without information on the wave conditions.  
 
The main reason why for parked/idling more scatter is observed is the fact that no wave-
describing SCADA signals are included as independent variables in the relation. When the tur-
bine is not in operation it also generates no thrust force, which means that the fluctuations in the 
tower bottom for-aft bending are solely caused by wave-induced loading. In case the 10-minute 
significant wave height, direction and period are included as independent parameters a signifi-
cantly improved accuracy is achieved (R2 ≈ 0.80-0.85). However, since the data from the wave 
buoy is missing for large chunks of time, only about 3000 data points are available. Including 
these parameters in the relation also has the consequence that the Flight Leader software cannot 
make any predictions of the value of the load indicator for the periods where no wave data are 
available. This would lead to a significant error when estimating the total load accumulation and 
therefore it is decided to establish the relations without including wave-describing parameters. 
 

4.3.4 Load indicator estimation 
In the previous section it has been described that for each of the five load cases a relation be-
tween the selected SCADA signals and load indicator has been determined and stored in the 
empirical database of the Flight Leader software. Next step is to combine these relations with 
the SCADA collected from all 36 turbines in the offshore wind farm in order to make an esti-
mate of the value of the load indicator the tower for-aft bottom bending moment for each tur-
bine i and timestamp t. 
 

 
Figure 4.2 Results of the post-processing steps for estimating the values of the load 
  indicator for tower for-aft bending. 
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The results of the post-processing are shown in Figure 4.2. The top graph indicates the number 
of data points classified as outliers, the middle graph shows the amount of corrected data for 
each turbine and the bottom graph indicates the percentage of missing data after all post-
processing steps have been performed. 
 
It can be seen that for most turbines the number of outliers is quite low (less than 0.4%) for all 
turbines. However, for some turbines about up to 4% of the estimated values of the load indica-
tor have been classified as outlier. It can also be observed that for these turbines most outliers 
occur for the load case parked/idling. As can be seen in Table 4.2 this is also the load case 
where a less accurate relationship between the selected SCADA parameters and load indicator 
has been established. 
 
Furthermore, the results of post-processing indicate that the amount of corrected data varies 
greatly over the different turbines. For a number of turbines only about 2% of all load estima-
tions had to be done using data from other turbines. Subsequently also a number of turbines has 
had around 10% of their load estimations corrected. Finally, for four turbines more than 20% of 
the estimated values of the load indicator have been derived from other turbines. This should be 
considered when comparing the load accumulation of these turbines with the other turbines as 
will be described further on in this report. 
 
The bottom graph indicates that after both post-processing steps have been completed the 
amount of missing data is identical for all 36 turbines and is equal to less than 0.5% of the total 
amount of data. 
 

4.3.5 Output 
Now the values of the load indicator for tower bottom for-aft bending have been estimated for 
each turbines i for each 10-minutetime period t it is possible to calculate the total load accumu-
lation for each turbine i using equations 3.4 and 3.5. The results are for the tower bottom for-aft 
bending are presented in Figure 3.5 where the load accumulation of each turbine i is shown rela-
tive to the load accumulation of turbine 18. 

 
Figure 4.3 Load accumulation of all five turbines relative to load accumulation of turbine 
  18. 
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The figure indicates that most turbines have suffered a load accumulation which is roughly 
within about 10% of the load accumulation of turbine 18. However, also about 10 turbines have 
accumulated significantly less load. When interpreting these results the outcome of the load es-
timation post-processing steps should be kept in mind (see Figure 4.2). It was shown that for 
turbines 1, 11, 13 and 31 more than 20% of all estimated values of the load indicator have been 
derived by averaging the data from the other turbines. This procedure is necessary to ensure that 
for all turbines an identical amount of data is available for calculating load accumulation but 
also leads to an inaccurate calculation of load accumulation for the mentioned turbines. 
 
In order to get more insight in the presented results a breakdown of the total load accumulation 
has been calculated (see Figure 3.6). The graph shows the contribution of three of the five load 
cases to the total load accumulation (blue bars). In order to interpret the results in both graphs 
the amount of data is also illustrated (red bars). Data from all 36 turbines have been used.  

 
Figure 4.4 Breakdowns of the load accumulation per load case. Note that the results of 
  only three of the five load cases are displayed.  
 
The graph shows that on average the 36 turbines operate in power production and under free-
stream conditions for most of the time. However, the total load accumulation for this load case 
is a much smaller part of the total. The opposite is found in case the turbine operates in wake 
conditions. Especially if the turbines are facing full wake conditions the load accumulation is 
more than two times as large compared to the amount of time the turbines operate in these con-
ditions. Although, not shown in the figure it has been found that when the turbines are in parked 
or idling condition still a significant amount of load accumulation occurs. For onshore turbines 
this was not the case (see Figure 3.6), which indicates that for this load case the wave-induced 
loading is dominant. Finally, relatively the largest load accumulation occurs during transient 
events. This load case accounts for a very small part of the total data but still the load accumula-
tion during this load case is similar to the one for power production under free-stream condi-
tions for which a staggering 10 times as many data are available.  
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4.3.6 Validation 
Last step in the analysis is the validation of the accuracy of the Flight Leader predictions. In or-
der to do this the predicted and measured load accumulation for each load case are calculated 
for both Flight Leader turbines. The prediction errors are subsequently calculated using equation 
3.6. The resulting prediction errors are shown in Figure 4.5. 
 

 
Figure 4.5  Prediction errors of the Flight Leader software for the load indicators for tower 

 bottom for-aft bending and blade root flapwise bending. 
 
The results in left graph show that the Flight Leader predictions of load accumulation are very 
accurate for the load indicator for tower for-aft bending. For the power production and transient 
event load cases the prediction errors are smaller than 2%. For the parked/idling load case the 
errors are slightly larger, which can be contributed to the fact that for this load case the relation 
between SCADA parameters and load indicator showed significantly more scatter compared to 
the relation for the other load cases. 
 
The results in the right graph show that for blade root flapwise bending the Flight Leader gives 
larger prediction errors compared to the errors found for tower bottom for-aft bending. Almost 
all errors are smaller than 5%. For normal power production under free-stream conditions the 
Flight Leader software underestimates the load accumulation of turbine 8 by more than 7%, 
whereas for the parked/idling load case the load accumulation for turbine is underestimated by 
almost 10%. The most likely explanation for the observed higher prediction errors is the fact 
that the load accumulation is calculated using a Wöhler coefficient of m = 10. This has the result 
that outliers have a very dominant effect of the load accumulation calculation. 
 
In order to prove this the total load accumulation has been calculated again but now using a 
Wöhler coefficient of m = 4 (similar as for tower bottom for-aft bending). When evaluating the 
prediction accuracy of the Flight Leader software with these settings it is found that for the 
power production load cases all prediction errors are smaller than 2%. For the transient events 
the error for both turbines is less than 3%, whereas for parked/idling the error is smaller than 5% 
for both turbines. These accuracies are at the same level as was found for tower bottom for-aft 
bending (see left graph), which indicates that the high value of the Wöhler coefficient causes the 
lower accuracy of the Flight Leader software when predicting the load accumulation for blade 
root flapwise bending. 
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4.4 Conclusions 
A full Flight Leader analysis has been performed using data from the OWEZ offshore wind 
farm. The analysis has been performed for mechanical loading on both tower bottom for-aft 
bending and blade root flapwise bending. For both loads the damage equivalent load range is 
used as load indicator. The analysis has shown that the results for both load indicators are very 
similar. This can be explained by considering that during power production the load fluctuations 
in both blade flapwise and tower for-aft bending are mainly caused by fluctuations in rotor 
thrust. As a result the most important findings and conclusions will not be listed separately for 
each load indicator.  
 
A trial-and-error approach has been adopted in order to determine what SCADA parameters are 
relevant for estimating the values of the load indicator. It was found that for both load indicators 
the same SCADA parameters should be included as independent variables in the artificial neural 
network. For each load indicator a relation between the selected SCADA signals and the values 
of the load has been determined. This has been done separately for each of the five identified 
load cases. For almost all load cases an accurate relation is established. Only for tower for-aft 
bending the relation for the parked/idling load case is surrounded by more scatter, which is 
caused by the fact that no wave-describing parameters are included in the relation. 
 
After establishing all required relations the values of the load indicators are estimated for all 36 
turbines in the offshore wind farm. Subsequently, the 10-minute load indicator values have been 
summed in order to calculate total load accumulation of each turbine in the farm. After compar-
ing the total load accumulation of all turbines it has been found that the difference in total load 
accumulation is smaller than 20% for most of turbines. A few exceptions exist, mainly for the 
turbines that have been in parked of idling state for large periods of time.  
 
It has also been analysed what load cases contribute most to total load accumulation. The most 
striking observation is the very high contribution of transient events to the total load accumula-
tion. Despite its low frequency of occurrence for both tower for-aft and blade flapwise bending 
the load accumulation during this load case is about equal to the load accumulation during 
power production in free-stream conditions. Furthermore, also load accumulation during wake 
operation is relatively high. In contradiction to what has been observed onshore, during the 
parked/idling load case still significant load accumulation occurs. For tower for-aft bending this 
is caused by the wave-induced loading, whereas for blade flapwise bending the most likely 
cause is the fluctuating gravitational force acting on the blades during idling. 
 
Finally, also the output of the Flight Leader software has been validated by comparing the pre-
dicted and measured total load accumulation for both Flight Leader turbines. For tower for-aft 
bending very small prediction errors are found for all load cases but parked/idling. The lower 
accuracy of the Flight Leader software here can be explained by the lower accuracy of the rela-
tion between SCADA parameters and load indicator for this load case. The prediction errors for 
blade flapwise bending are found to be larger. After some additional research it was found that 
this is caused by the high value of the Wöhler coefficient (m = 10) for calculating the total load 
accumulation. This has the consequence that outliers have a huge impact on the load accumula-
tion.  
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5. Status and future research 

Within this project the Flight Leader software has been developed, tested and evaluated using 
data from both an onshore and offshore wind farm. Based on the results of this research it is ad-
vised that in the future the following aspects should be investigated or developed further. 
 

5.1 Online implementation 
The evaluation of the Flight Leader using data both an onshore and offshore wind farm have 
been performed in an ‘offline’ way; where a dataset is retrieved from an already existing wind 
farm, where the measurement infrastructure is not optimised for the application of the Flight 
Leader. In the future the Flight Leader concept should be evaluated using ‘online’ implementa-
tion. During the construction of the wind farm the location of the Flight Leader turbines should 
be carefully selected. Furthermore, all turbines should be equipped with calibrated sensors in 
order to ensure accurate Flight Leader predictions.  
 
After commissioning of the wind farm at regular intervals (every week or month) data should be 
retrieved and fed to the Flight Leader software. The software should be applied in order to up-
date the prediction of load accumulation for all turbines in the farm. This information should be 
combined with results from inspections or condition monitoring systems in order to assess the 
health of the components and adjust the maintenance schemes accordingly. 
 
The offline analysis has shown the Flight Leader concept is a cost-effective method for assess-
ing the load accumulation at all turbines in a wind farm. By using the online implementation the 
practical application of the Flight Leader can be assessed. 
 

5.2 Automated SCADA parameter selection 
Key to the application of the Flight Leader concept are the relations between standard (SCADA) 
signals and load indicators. The more accurate these relations, the more reliable are the calcula-
tions of accumulated loading. Before the relations can be established it has to be decided which 
standard signals should be used to estimate the load indicators. Until now this has been done us-
ing a trial-and-error approach. This however is not ideal, especially since a wind farm operator 
might not have detailed knowledge about the behaviour of the wind turbine. Therefore an auto-
mated procedure should be implemented in the software which uses some statistical method in 
order to select the set of SCADA parameters that should be used to estimate the values of a cer-
tain load indicator. If it turns out that no automatic procedure can be developed at least a library 
should be constructed which contains for a number of load indicators a preferred set of SCADA 
input signals. 
 
In addition to this it will also be worthwhile to use aero-elastic simulations for assessing the im-
portance of the different SCADA parameters for estimating the values of a certain load indica-
tor. The benefit of using simulations is the fact that a large number of input signals are available 
in the simulations, which are not currently measured at the turbines at the EWTW site. Using 
the simulations it can be identified if certain parameters (which are not currently measured) can 
be used to estimate the values of a load indicator with greater accuracy. If this is found to be the 
case the next step would be to investigate if and how it is possible to measure these parameters 
on a modern multi-MW wind turbine. 
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5.3 Selecting relevant load indicators 
For the research done so far relatively simple fatigue-based load indicators have been used. It is 
commonly accepted that for a wind turbine blade and tower fatigue is the most important degra-
dation mechanism. However, the degradation of drive train components is much less well un-
derstood. This is a topic subject to further research. 
 

5.4 Impact assumptions 
During the development of the Flight Leader software several assumptions have been made. It 
needs to be verified whether these assumptions are correct or not. Furthermore, their influence 
on the output of the Flight Leader software should be assessed. 
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Appendix A Justification work packages 

In this appendix the work performed during the course of the project is split up for each of the 
defined work packages in the original project proposal. This makes it easy to understand how 
the originally planned work is performed and where the different results are documented. 
 

6.4 WP1: Development of initial model at the EWTW 
Using the developed Flight Leader software relations between SCADA parameters and load in-
dicators for several wind turbine components have been determined. Separate relations have 
been established for each of the seven defined load cases (which are a combination of turbine 
state and wake condition). Three different characterisation methods have been evaluated where 
it was found that artificial neural networks are the best method for establishing the mentioned 
relations. 
 

6.5 WP2: Structural dynamic analyses for N80 turbine 
A detailed aero-elastic wind turbine model of the Nordex N80 has been developed in ECN’s 
aero-elastic software simulation tool PHATAS. The model has been tuned and validated using 
measured data from turbine 2 at the EWTW wind farm [5]. 
 

6.6 WP3: Wake analyses for five Nordex N80 turbines 
Using ECN’s wind farm wake analysis program FarmFlow has been applied to calculate the ef-
fects of wakes on the five Nordex N80 turbines at the EWTW site. For both a partial and full 
wake situation the added turbulence intensity and wind speed reduction (wake deficit) have 
been calculated for the whole operational range of the turbine. These data have subsequently 
been fed to ECN’s WakeSWIFT code in order to generate 3-D wake wind fields which can be 
used as input for the aero-elastic simulations. 
 

6.7 WP4: Specification of equivalent loads model 
During the first months of the project firstly functional specifications for the Flight Leader soft-
ware have been drafted [8]. In this document it has been described what functionality should be 
included in the software model and based on this information the actual development of the 
software could be started. Based on the functional specifications technical specifications have 
been written [9]. These describe the different processes in the software in detail and serve as a 
detailed guideline for the actual programming of the software. 
 

6.8 WP5: Programming of equivalent loads computer code 
Based on the detailed technical specifications a demo version of the Flight Leader software has 
been programmed in MATLAB® [10]. The software includes all aspects of the Flight Leader 
concept and is intended to be used by operators of offshore wind farms and can be applied to 
process the SCADA data and mechanical load measurements from an (offshore) wind farm. The 
main output of the model is a comparison of the accumulated mechanical loading of all turbines 
in the offshore wind farm. This information can subsequently be used to optimise O&M strate-
gies, for example by prioritising the inspection or replacement of certain components on the 
heavier loaded turbines.  
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6.9 WP6: Verification of equivalent loads computer code 
Extensive analyses have been performed using data form ECN’s wind farm EWTW [11]. The 
performance and accuracy of the Flight Leader software has been evaluated for different load 
indicators. In general the results have been encouraging, where most of the larger errors could 
be explained by the fact that the (SCADA) sensors used at the Nordex N80 turbines are not 
calibrated. Based on the experiences gathered while evaluating the Flight Leader concept some 
changes to the software were made [10].  
 
Although not originally foreseen in the project plan additional analyses have been performed 
using data from an offshore wind farm. The goal of this research was to assess whether the en-
couraging results found for the onshore analysis could also achieved when the Flight Leader 
concept is applied to an offshore wind farm where wave-induced loading and large-scale wake 
effects play an important role. Using data from the OWEZ offshore wind farm it has been con-
firmed that the Flight Leader concept is also valid for large offshore wind farms [12]. 
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Appendix B Neural network training procedure 

In this appendix the training procedure for a neural network is described in more detail. The 
complete procedure is indicated by the flowchart in Figure B.1. In the following subsections a 
description of the different parts are provided. 
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Figure B.1  Flowchart indicating the procedure of neural network training and output 

 visualisation. 

B.1 Initial neural network configuration 
As mentioned already in section 3.2 a neural network in fact represents a mathematical model, 
where a number of (transfer) functions are connected in parallel and, possibly, also in series. 
Based on the weighted sum of multiple input signals each transfer function calculates a value, 
which subsequently serves as input for the next transfer function. The transfer function, includ-
ing the weighted summation of multiple input signals, is labelled as neuron. A neural network 
with a sufficient number of neurons is, in theory, able to approximate every possible function. 
 
To start with the network architecture has to be specified. It has to be decided how many neu-
rons are included in the network. In general it can be said that the more input signals are used 
the more neurons the network should contain. After the architecture is defined the network is 
initialised by randomly choosing a value for each connection weight in the network.  
 

B.2 Updating network weights 
After the initialisation is completed the ‘training’ process of the neural network is started. The 
goal of the training process is to adjust the network weights in such a way that it is able to esti-
mate the values of the output variable as accurately as possible. During the training process the 
following steps are repeated: 

1. Present the training dataset to the neural network. The dataset contains multiple samples 
(10-minute values) of both inputs (SCADA parameters) and output (load indicator). 

2. Compare the network’s output to the desired output from the ‘training’ dataset. 
Calculate the error in each output neuron. 

3. For each neuron, calculate what the output should have been, and a scaling factor, how 
much lower or higher the output must be adjusted to match the desired output. This is 
the local error. 

4. Adjust the weights of each neuron to lower the local error. 
5. Assign ‘blame’ for the local error to neurons at the previous level, giving greater 

responsibility to neurons connected by stronger weights. 
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6. Repeat from step 3 on the neurons at the previous level, using each one’s ‘blame’ as its 
error. 

 

B.3 Evaluate network performance (early stopping) 
Common practice in neural network analysis is the fact that ‘over-fitting’ of the trained network 
should be prevented at all times. Over-fitting is the phenomenon where the network is more ac-
curate in fitting known data (hindsight) but less accurate in predicting new data (foresight). 
Over-fitting mainly occurs when too little training data are available or when the network is 
trained for a too long time. In order to prevent an over-fitting network the early-stopping tech-
nique is usually applied.  
 
The neural network is trained using a ‘training’ dataset. Subsequently, for each iteration, the 
network’s performance is evaluated using a ‘validation’ dataset. Naturally the networks’ predic-
tion error for the training dataset decreases with every iteration. Usually, for the first number of 
iterations, this is also the case for the validation dataset. At the point where the neural network’s 
performance starts decreasing the training is halted. The early-stopping technique is shown 
graphically in Figure B.2 .  
 

 
Figure B.2  Early-stopping technique for preventing over-fitting of a neural network. The 

 prediction error (y-axis) for both the training (blue line) and validation (red 
 line) data sets are plotted as function of the number of performed iterations
 (x-axis). At the point (number of iterations) where the prediction error for the 
 validation dataset starts increasing training should be halted. 

B.4 Display network performance 
After the training of the neural network is completed the performance of the trained network can 
be visualised. Usually this is done by drawing a scatter plot which shows the desired output (in 
this case the measured values of a certain load indicator) on the x-axis versus the predicted out-
put (values of a certain load indicator) on the y-axis. The amount of scatter in this graph is a 
good measure for the accuracy of the neural network: The more accurate the network the less 
scatter will be observed in this graph. 
 
 


